CAUCHY'S THEOREM FOR STAR-SHAPED REGIONS

These notes give an alternative treatment and proof of Cauchy's integral formula without requiring the concept of toy contours, as used in Stein and Shakarchi.

Definition 1. We say a subset Ω of \mathbb{C} is star-shaped with respect to the point $p \in \Omega$ if, for every point $z \in \Omega$, the line segment from p to z lies entirely inside of Ω.

Note that a star-shaped set is connected, since any pair of points $z_{1}, z_{2} \in \Omega$ can be linked by a line segment from z_{1} to p followed by a line segment from p to z_{2}. Hence, every open star-shaped set is actually a region.

Theorem 1. Let $\Omega \subset \mathbb{C}$ be a star-shaped region and $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function. Then f has a primitive in Ω.

Proof. Suppose that Ω is star-shaped with respect to $p \in \Omega$. For $z \in \Omega$, let $\gamma_{z} \subset \Omega$ be the line segment from p to z. Define

$$
F(z)=\int_{\gamma_{z}} f(w) d w
$$

Then $F: \Omega \rightarrow \mathbb{C}$ is a primitive for f.
To see this, fix $z \in \Omega$ and let D be a disc centred at z, small enough so that $D \subset \Omega$. Let $h \in \mathbb{C}$ be sufficiently small so that $z+h \in D$. Then, by Goursat's theorem,

$$
F(z+h)-F(z)=\int_{\gamma_{z+h}} f(w) d w-\int_{\gamma_{z}} f(w) d w=\int_{\eta} f(w) d w
$$

where η is the line segment from z to $z+h$. (Note that η is contained in D and hence also in Ω.)

Writing $f(w)=f(z)+(f(w)-f(z))$, we have

$$
\frac{1}{h}(F(z+h)-F(z))=\frac{1}{h} \int_{\eta} f(z) d w+\frac{1}{h} \int_{\eta}(f(w)-f(z)) d w .
$$

Now, since w is a primitive for the constant function 1, we have $\int_{\eta} f(z) d w=f(z) \int_{\eta} 1 d w=$ $h f(z)$, so that

$$
\frac{1}{h} \int_{\eta} f(z) d w=f(z)
$$

We also have

$$
\left|\int_{\eta}(f(w)-f(z)) d w\right| \leq \sup _{w \in \eta}|f(w)-f(z)| \cdot \operatorname{length}(\eta)=|h| \sup _{w \in \eta}|f(w)-f(z)|
$$

and therefore

$$
\left|\frac{1}{h} \int_{\eta}(f(w)-f(z)) d w\right| \leq \sup _{w \in \eta}|f(w)-f(z)|
$$

which goes to 0 as $h \rightarrow 0$ (and thus $w \rightarrow z$), due to the continuity of f at z.

We finally obtain

$$
\lim _{h \rightarrow 0} \frac{1}{h}(F(z+h)-F(z))=f(z)
$$

as required.
Corollary 2 (Cauchy's theorem for star-shaped regions). Let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function defined on a star-shaped region Ω. Then

$$
\int_{\gamma} f=0
$$

for every closed curve γ in Ω.
Proof. By the previous result, f has a primitive on Ω.
Theorem 3 (Cauchy's integral formula for a disc). Let f be holomorphic in an open set Ω that contains an open disc D and its boundary circle C, equipped with the positive (counterclockwise) orientation. Then

$$
f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

for every $z \in D$.
Proof. Let $z \in D$ be given, and form the open set \tilde{D} obtained by removing from D the point z, together with the line segment from z radially outwards to the boundary circle C. Then \tilde{D} is a star-shaped region with respect to the centre of D. Define $g(\zeta)=\frac{f(\zeta)}{\zeta-z}$ for $\zeta \in \Omega \backslash\{z\}$. Then $\left.g\right|_{\tilde{D}}: \tilde{D} \rightarrow \mathbb{C}$ is a holomorphic function, so we may apply Cauchy's theorem for star-shaped regions to obtain

$$
\int_{\gamma_{\epsilon, \delta}} g(\zeta) d \zeta=0
$$

where $\gamma_{\epsilon, \delta}$ is the keyhole shaped contour contained in \tilde{D}, as shown. Here, δ is the width of the corridor, and ϵ is both the radius of the small circular arc centred at z and the distance of the large circular arc from the boundary circle C.

If, for each fixed $\epsilon>0$, we let the width δ of the corridor go to zero, the contributions to the integral of the two sides of the corridor cancel due to the continuity of g, and we obtain

$$
\lim _{\delta \rightarrow 0} \int_{\gamma_{\epsilon, \delta}} g(\zeta) d \zeta=\int_{C_{\epsilon}} g(\zeta) d \zeta-\int_{\Lambda_{\epsilon}} g(\zeta) d \zeta=0
$$

where C_{ϵ} is the circle in D, centred at the centre of D and at distance ϵ from C, and Λ_{ϵ} is the circle of radius ϵ centred at z, both with the positive orientation.

We now consider what happens as $\epsilon \rightarrow 0$. We have

$$
\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}} g(\zeta) d \zeta=\int_{C} g(\zeta) d \zeta
$$

due to the continuity of g on $\Omega \backslash\{z\}$. We also have

$$
\lim _{\epsilon \rightarrow 0} \int_{\Lambda_{\epsilon}} g(\zeta) d \zeta=\lim _{\epsilon \rightarrow 0} \int_{\Lambda_{\epsilon}} \frac{f(\zeta)}{\zeta-z} d \zeta=2 \pi i f(z)
$$

similarly as in lectures, by the holomorphicity of f at z.
Thus we have

$$
\int_{C} g(\zeta) d \zeta=\int_{C} \frac{f(\zeta)}{\zeta-z} d \zeta=2 \pi i f(z)
$$

as required.

