COMPLEX LOGARITHMS

Let $z \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ be a non-zero complex number. We say that $\lambda \in \mathbb{C}$ is a logarithm of z if $e^{\lambda}=z$. (Note that there is no $\lambda \in \mathbb{C}$ such that $e^{\lambda}=0$, and thus 0 does not have a logarithm.) If we write $z=|z| e^{i \theta}, \theta \in \mathbb{R}$, and $\lambda=x+i y$, we see that

$$
z=|z| e^{i \theta}=e^{\lambda}=e^{x+i y}=e^{x} e^{i y} .
$$

We have that $|z|=e^{x}$, so $x=\log |z|$, while $e^{i \theta}=e^{i y}$ implies that $y=\theta+2 k \pi, k \in \mathbb{Z}$. Thus x is uniquely determined, but there are infinitely many possible choices for y, with any two choices differing by an integer multiple of 2π. We see therefore that

$$
e^{\lambda}=z \quad \text { if and only if } \quad \lambda=\log |z|+i \theta
$$

where $\theta \in \mathbb{R}$ is any argument for z.
Let $\Omega \subset \mathbb{C}^{*}$ be an open set. A logarithm on Ω is a holomorphic function $\lambda: \Omega \rightarrow \mathbb{C}$ such that $\exp (\lambda(z))=z$ for all $z \in \Omega$. (We will later see that this condition ensures any logarithm is holomorphic.) From the above discussion we see that we must always have $\operatorname{Re}(\lambda(z))=\log |z|$. We also see that $\operatorname{Im}(\lambda(z))$ is a continuous choice of argument for the points $z \in \Omega$. However, depending on the set Ω, such a choice may or may not exist.

Theorem 1. Let $\Omega \subset \mathbb{C}^{*}$ be an region. A function $\lambda: \Omega \rightarrow \mathbb{C}$ is a logarithm on Ω if and only if λ is a primitive for $1 / z$ that satisfies $\exp (\lambda(c))=c$ for some $c \in \Omega$.

Proof. Let $\lambda: \Omega \rightarrow \mathbb{C}$ be a logarithm. Differentiating $\exp (\lambda(z))=z$ gives $1=$ $\exp (\lambda(z)) \lambda^{\prime}(z)=z \lambda^{\prime}(z)($ since $\exp (\lambda(z))=z)$. Since $z \neq 0$ we obtain $\lambda^{\prime}(z)=1 / z$, and clearly $\exp (\lambda(c))=c$ for all $c \in \Omega$.

Conversely, suppose that $\lambda: \Omega \rightarrow \mathbb{C}$ is a holomorphic function such that $\lambda^{\prime}(z)=1 / z$ and $\exp (\lambda(c))=c$ for some $c \in \Omega$. Then

$$
\frac{\partial}{\partial z}(z \exp (-\lambda(z)))=\exp (-\lambda(z))+z \exp (-\lambda(z))\left(-\lambda^{\prime}(z)\right)=0
$$

so $z \exp (-\lambda(z))$ is a constant (since Ω is connected). Evaluating at $z=c$ we see that the constant is 1 . Thus $\exp (\lambda(z))=z$ for all $z \in \Omega$.

Corollary 1. A region $\Omega \in \mathbb{C}^{*}$ has a logarithm if and only if the reciprocal function $1 / z$ has a primitive on Ω.

Proof. Let λ be a primitive for $1 / z$ on Ω. Choose $c \in \Omega$ and set $\tilde{\lambda}(z)=\lambda(z)+K$ where $K \in \mathbb{C}$ is a constant chosen so that $e^{K}=c e^{-\lambda(c)}$. Then $\tilde{\lambda}$ is still a primitive for $1 / z$ and $\exp (\tilde{\lambda}(c))=c$. By the previous result $\tilde{\lambda}$ is a logarithm on Ω.

Corollary 2. Every simply connected region $\Omega \in \mathbb{C}^{*}$ has a logarithm. Any two logarithms differ by an integer multiple of $2 \pi i$.

Date: November 19, 2014.

Proof. Fix some point $z_{0} \in \Omega$. Choose $\lambda_{0} \in \mathbb{C}$ such that $e^{\lambda_{0}}=z_{0}$. Given $z \in \Omega$, define

$$
\lambda(z)=\lambda_{0}+\int_{\gamma} \frac{1}{\zeta} d \zeta
$$

where γ is any path in Ω from z_{0} to z.
Since Ω is simply connected, the integral is independent of path from z_{0} to z (any two such paths are homotopic with endpoints fixed and therefore give the same integral). We see that λ is a primitive for $1 / z$ by differentiating the integral in the same way as in the proof of the existence of primitives on an open disc (Stein and Shakarchi, Theorem 2.1, Chapter 2). We have $\exp \left(\lambda\left(z_{0}\right)\right)=\exp \left(\lambda_{0}\right)=z_{0}$, so λ is a logarithm on Ω.

Now suppose that λ_{1} and λ_{2} are both logarithms on Ω. Then $\exp \left(\lambda_{1}(z)\right)=\exp \left(\lambda_{2}(z)\right)$ for all $z \in \Omega$. Thus $\exp \left(\lambda_{1}(z)-\lambda_{2}(z)\right)=1$ for all $z \in \Omega$. Differentiating, $\left(\lambda_{1}^{\prime}(z)-\right.$ $\left.\lambda_{2}^{\prime}(z)\right) \exp \left(\lambda_{1}(z)-\lambda_{2}(z)\right)=\left(\lambda_{1}^{\prime}(z)-\lambda_{2}^{\prime}(z)\right)=0$, and $\lambda_{1}(z)-\lambda_{2}(z)$ is a constant. But $\exp \left(\lambda_{1}(z)-\lambda_{2}(z)\right)=1$ implies that the constant must be $2 k \pi i$ for some $k \in \mathbb{Z}$, and then $\lambda_{1}(z)=\lambda_{2}(z)+2 k \pi i$.

Example 1. There does not exist a logarithm on \mathbb{C}^{*} because there is no primitive for $1 / z$ on \mathbb{C}^{*}.

Definition 1. Consider the slit plane $\mathbb{C} \backslash\{z \in \mathbb{C}: \operatorname{Re}(z) \leq 0, \operatorname{Im}(z)=0\}$ (the complex plane with the ray from 0 along the negative real axis removed). The principal branch of the logarithm is the function

$$
\log : \mathbb{C} \backslash\{z \in \mathbb{C}: \operatorname{Re}(z) \leq 0, \operatorname{Im}(z)=0\} \rightarrow \mathbb{C}
$$

given by the formula

$$
\log (z)=\log |z|+i \theta \quad \text { where } \quad z=|z| e^{i \theta} \quad \text { and } \quad \theta \in(-\pi, \pi)
$$

Example 2. There exist non-simply connected regions on which a logarithm exists. For example, let $\Omega=D_{1}(2) \backslash\{2\} \subset \mathbb{C}^{*}$ be the disc of radius 1, centred at 2, with the point at 2 removed. Then the restriction $\lambda=\left.\log \right|_{\Omega}$ is a logarithm on Ω.

The rest of the material on complex logarithms can be found on page 100 of Stein and Shakarchi.

