LAURENT SERIES

We say that a series $\sum_{n=-\infty}^{\infty} b_{n}, b_{n} \in \mathbb{C}$, converges with sum S if the series $\sum_{n=-\infty}^{-1} b_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ both converge, and $\sum_{n=-\infty}^{-1} b_{n}+\sum_{n=0}^{\infty} b_{n}=S$.

A series of the form $\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is called a Laurent series. The principal part of the Laurent series is the series $\sum_{n=-\infty}^{-1} a_{n}\left(z-z_{0}\right)^{n}$.

Consider the part $\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ of the Laurent series. This is a power series in $z-z_{0}$, hence the largest open set on which it converges is determined by $\left|z-z_{0}\right|<r_{2}$ for some $r_{2} \in[0, \infty]$, that is, an open disc centred at z_{0} of radius r_{2} (all of \mathbb{C} if $r_{2}=\infty$, and the empty set if $r_{2}=0$). Now consider the principal part $\sum_{n=-\infty}^{-1} a_{n}\left(z-z_{0}\right)^{n}$ of the Laurent series. Changing the summation variable to $m=-n$ we see that this is actually a power series in $\frac{1}{z-z_{0}}$. Thus the largest open set on which it converges is determined by $\left|\frac{1}{z-z_{0}}\right|<s$ for some $s \in[0, \infty]$, that is, $\left|z-z_{0}\right|>r_{1}=1 / s$, where $r_{1}=0$ if $s=\infty$, $r_{1}=\infty$ if $s=0$, and $r_{1}=-1$ if there is no principal part (we explain this choice in a moment). Taking the intersection of these sets, we see that the largest open set on which the Laurent series $\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ converges is an annulus $r_{1}<\left|z-z_{0}\right|<r_{2}$ (the empty set if $r_{1} \geq r_{2}$). Note that if the Laurent series has no principal part then $r_{1}=-1$ and the series converges on $-1<\left|z-z_{0}\right|<r_{2}$, that is, on the open disc $\left|z-z_{0}\right|<r_{2}$.

Example 1. $e^{1 / z}$ has a Laurent series expansion centred at 0 ,

$$
e^{1 / z}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{1}{z}\right)^{n}=\sum_{n=-\infty}^{0} \frac{z^{n}}{(-n)!}
$$

Example 2. Let $f: \mathbb{C} \backslash\{1\} \rightarrow \mathbb{C}, f(z)=\frac{1}{1-z}$. If $|z|<1, f(z)=\sum_{n=0}^{\infty} z^{n}$. If $|z|>1$, then $\frac{1}{|z|}<1$, hence

$$
f(z)=\frac{1}{1-z}=-\frac{1}{z} \cdot \frac{1}{\left(1-\frac{1}{z}\right)}=-\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{1}{z}\right)^{n}=-\sum_{n=-\infty}^{-1} z^{n}=-\frac{1}{z}-\frac{1}{z^{2}}-\frac{1}{z^{3}}-\cdots
$$

is the Laurent series for $\frac{1}{1-z}$ on the annulus $|z|>1$.

Date: September 30, 2014.

Theorem 1. Let f be holomorphic on the annulus A given by $r_{1}<\left|z-z_{0}\right|<r_{2}$, where $r_{1}, r_{2} \in[0, \infty]$. Then there is a unique Laurent series $\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ such that

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad \text { for all } \quad z \in A
$$

For every $r \in\left(r_{1}, r_{2}\right)$,

$$
a_{n}=\frac{1}{2 \pi i} \int_{\left|z-z_{0}\right|=r} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

for all $n \in \mathbb{Z}$.
Corollary 1. If f has an essential singularity at z_{0} then f has a Laurent series expansion at z_{0} with infinite principal part.

