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Please make sure that your copy of the problem set is
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Problem 1

Determine the image of the open disk |z| < 1 under the fractional linear
transformation

f(z) =
2

z − i
.

Solution: Let D denote the disk |z| < 1. We know that f(∂D) is a circle in
the Riemann sphere. Because f(i) = ∞, that circle has the form L ∪ {∞}
for some line L in the complex plane. To determine L we compute

f(−i) = i, f(1) = 1 + i.

It follows that L is the line Im(z) = 1. Since Im(f(0)) = 2 > 1, we see that
f(D) is the half-plane Im(z) > 1.

Problem 2

Given a complex number w 6= 0 consider the function

f(z) =
z9

z5 − w5
.

a

Find the Laurent series of f(z) in the region |z| > |w|.

(Continued on page 2.)
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Solution: For |z| > |w| one has

f(z) =
z4

1− (wz )5

= z4
∞∑
k=0

(w
z

)5k
= z4

0∑
n=−∞

( z
w

)5n
=

0∑
n=−∞

z5n+4

w5n

= z4 +
w5

z
+
w10

z6
+ · · · .

b

Let r > |w|. Use the result of a to compute the line integral∫
|z|=r

f(z) dz.

Solution: The general formula for the coefficients of a Laurent series yields∫
|z|=r

f(z) dz = 2w5πi.

Problem 3

Let f(z) be a non-constant analytic function in C \ {0} such that

z3f(z)→ 0 as z → 0.

a

What kind of isolated singularity can f(z) have at 0 ?

Solution: By Riemann’s removable singularities theorem there is an entire
function g(z) such that g(z) = z2f(z) for z 6= 0. Hence

f(z) =
g(z)

z2

has at most a pole of order 2 at 0.

b

Suppose in addition that

f(z)→ 0 as z →∞.

(Continued on page 3.)
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Show that there exist constants a, b ∈ C such that

f(z) =
a

z
+

b

z2
.

Solution: Let
P (z) =

a

z
+

b

z2

be the principal part of f(z) at 0. Then h(z) = f(z)−P (z) has a removable
singularity at 0 and satisfies

h(z)→ 0 as z →∞.

By Liouville’s theorem, h(z) must be identically zero, so f(z) = P (z).

Problem 4

Let D be a bounded domain and ∂D its boundary. Let f(z) be a continuous
function on the bounded closed set D ∪ ∂D such that f(z) is analytic on
D and real-valued on ∂D. Show that f(z) is constant. Hint: Apply the
maximum principle to the imaginary part of f(z).

Solution: Let f = u+ vi, where u, v are real-valued. Then v is harmonic in
D and vanishes on ∂D. By the maximum principle, v must be identically
zero. The Cauchy-Riemann equations says that

∂u

∂x
=
∂v

∂y
= 0,

∂u

∂y
= −∂v

∂x
= 0

in D. Therefore, f = u is constant.

Problem 5

Consider the function

f(z) =
eiz − 1

z + z3
.

a

Classify all isolated singularities of f(z) in the complex plane and compute
the residue at each pole.

Solution: The numerator eiz − 1 has a simple zero at 2πk for every integer
k, whereas the denominator

z + z3 = z(z − i)(z + i)

has simple zeros at 0, i,−i. Hence, f(z) has a removable singularity at 0 and
simple poles at ±i. As for the residues,

Res[f(z), i] = lim
z→i

(z − i)f(z) =
eiz − 1

z(z + i)

∣∣∣∣
z=i

=
1

2
(1− e−1),

Res[f(z),−i] =
eiz − 1

z(z − i)

∣∣∣∣
z=−i

=
1

2
(1− e).

(Continued on page 4.)
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b

What kind of singularity does f(z) have at ∞ ?

Solution: For t > 1 we have

|f(t)| ≤ 2

t+ t3
→ 0 as t→∞,

|f(−it)| = et − 1

t3 − t
→∞ as t→∞.

Therefore, f(z) cannot have a removable singularity or a pole at ∞, so it
has an essential singularity there.

c

For r > 1 consider the curve

γr(t) = reit, 0 ≤ t ≤ π.

Show that ∫
γr

f(z) dz → 0 as r →∞.

Solution: For any z ∈ C one has |eiz| = e−Im(z). If |z| = r, Im(z) ≥ 0 this
gives

|f(z)| ≤ 2

r3 − r
.

The ML-estimate gives∣∣∣∣∫
γr

f(z) dz

∣∣∣∣ ≤ πr · 2

r3 − r
=

2π

r2 − 1
→ 0 as r →∞.

d

Apply the residue theorem in the domain

Dr = {z ∈ C : |z| < r, Im(z) > 0}

together with the results of a and c to compute the integral∫ ∞
−∞

sinx

x+ x3
dx.

Solution: For r > 1 the residue theorem gives

2πiRes[f(z), i] =

∫
∂Dr

f(z) dz =

∫ r

−r
f(x) dx+

∫
γr

f(z) dz.

Letting r →∞ we get

πi(1− e−1) =

∫ ∞
−∞

f(x) dx.

Taking imaginary parts we obtain∫ ∞
−∞

sinx

x+ x3
dx = π(1− e−1).

(Continued on page 5.)
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Problem 6

a

Determine the number of zeros, counting multiplicity, of the function

f(z) = ez + 5z7 − 2

in the square
R = {z ∈ C : |Re(z)| < 1, |Im(z)| < 1}.

Solution: For any z ∈ ∂D we have

|ez| = eRe(z) ≤ e < 3,

so
|ez − 2| ≤ |ez|+ 2 < 5 ≤ |5z7|.

By Rouché’s theorem, the functions f(z) and g(z) = 5z7 have the same
number of zeros in D, counting multiplicity. Since 0 is the only zero of g(z)
and this zero has order 7, we conclude that f(z) has 7 zeros in D counting
multiplicity.

b

Show that if z0 is a zero of f(z) of order k ≥ 1 then z̄0 is also a zero of f(z)
of order k.

Solution: Because f(z) is given by a power series centred at the origin where
all coefficients are real, we have

f(z) = f(z̄).

The power series representation of f(z) at z0 has the form

f(z) =
∞∑
n=k

an(z − z0)n

with ak 6= 0. Therefore,

f(z) = f(z̄) =
∞∑
n=k

ān(z − z̄0)n,

so z̄0 is also a zero of f(z) of order k.

c

How many of the zeros found in part a are real, and how many have positive
imaginary part?

Solution: Because

f(−1) = e−1 − 7 < 0, f(1) = e+ 3 > 0

and f ′(x) > 0 for x real, we see that f(z) has exactly one real zero in D,
and this zero is simple. Consequently, the number of zeros of f(z) in D with
positive imaginary part is (7− 1)/2 = 3, counting multiplicity.

END


