UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: MAT2410 - Introduction to Complex Analysis
Day of examination: Monday December 12th 2016
Examination hours: 9:00-13:00
This problem set consists of 5 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Determine the image of the open disk $|z|<1$ under the fractional linear transformation

$$
f(z)=\frac{2}{z-i}
$$

Solution: Let D denote the disk $|z|<1$. We know that $f(\partial D)$ is a circle in the Riemann sphere. Because $f(i)=\infty$, that circle has the form $L \cup\{\infty\}$ for some line L in the complex plane. To determine L we compute

$$
f(-i)=i, \quad f(1)=1+i
$$

It follows that L is the line $\operatorname{Im}(z)=1$. Since $\operatorname{Im}(f(0))=2>1$, we see that $f(D)$ is the half-plane $\operatorname{Im}(z)>1$.

Problem 2

Given a complex number $w \neq 0$ consider the function

$$
f(z)=\frac{z^{9}}{z^{5}-w^{5}}
$$

a
Find the Laurent series of $f(z)$ in the region $|z|>|w|$.

Solution: For $|z|>|w|$ one has

$$
\begin{aligned}
f(z) & =\frac{z^{4}}{1-\left(\frac{w}{z}\right)^{5}} \\
& =z^{4} \sum_{k=0}^{\infty}\left(\frac{w}{z}\right)^{5 k} \\
& =z^{4} \sum_{n=-\infty}^{0}\left(\frac{z}{w}\right)^{5 n} \\
& =\sum_{n=-\infty}^{0} \frac{z^{5 n+4}}{w^{5 n}} \\
& =z^{4}+\frac{w^{5}}{z}+\frac{w^{10}}{z^{6}}+\cdots
\end{aligned}
$$

b

Let $r>|w|$. Use the result of a to compute the line integral

$$
\int_{|z|=r} f(z) d z
$$

Solution: The general formula for the coefficients of a Laurent series yields

$$
\int_{|z|=r} f(z) d z=2 w^{5} \pi i
$$

Problem 3

Let $f(z)$ be a non-constant analytic function in $\mathbb{C} \backslash\{0\}$ such that

$$
z^{3} f(z) \rightarrow 0 \quad \text { as } z \rightarrow 0
$$

a

What kind of isolated singularity can $f(z)$ have at 0 ?

Solution: By Riemann's removable singularities theorem there is an entire function $g(z)$ such that $g(z)=z^{2} f(z)$ for $z \neq 0$. Hence

$$
f(z)=\frac{g(z)}{z^{2}}
$$

has at most a pole of order 2 at 0 .
b

Suppose in addition that

$$
f(z) \rightarrow 0 \quad \text { as } z \rightarrow \infty
$$

Show that there exist constants $a, b \in \mathbb{C}$ such that

$$
f(z)=\frac{a}{z}+\frac{b}{z^{2}}
$$

Solution: Let

$$
P(z)=\frac{a}{z}+\frac{b}{z^{2}}
$$

be the principal part of $f(z)$ at 0 . Then $h(z)=f(z)-P(z)$ has a removable singularity at 0 and satisfies

$$
h(z) \rightarrow 0 \quad \text { as } z \rightarrow \infty .
$$

By Liouville's theorem, $h(z)$ must be identically zero, so $f(z)=P(z)$.

Problem 4

Let D be a bounded domain and ∂D its boundary. Let $f(z)$ be a continuous function on the bounded closed set $D \cup \partial D$ such that $f(z)$ is analytic on D and real-valued on ∂D. Show that $f(z)$ is constant. Hint: Apply the maximum principle to the imaginary part of $f(z)$.

Solution: Let $f=u+v i$, where u, v are real-valued. Then v is harmonic in D and vanishes on ∂D. By the maximum principle, v must be identically zero. The Cauchy-Riemann equations says that

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=0, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}=0
$$

in D. Therefore, $f=u$ is constant.

Problem 5

Consider the function

$$
f(z)=\frac{e^{i z}-1}{z+z^{3}}
$$

a
Classify all isolated singularities of $f(z)$ in the complex plane and compute the residue at each pole.

Solution: The numerator $e^{i z}-1$ has a simple zero at $2 \pi k$ for every integer k, whereas the denominator

$$
z+z^{3}=z(z-i)(z+i)
$$

has simple zeros at $0, i,-i$. Hence, $f(z)$ has a removable singularity at 0 and simple poles at $\pm i$. As for the residues,

$$
\begin{aligned}
& \operatorname{Res}[f(z), i]=\lim _{z \rightarrow i}(z-i) f(z)=\left.\frac{e^{i z}-1}{z(z+i)}\right|_{z=i}=\frac{1}{2}\left(1-e^{-1}\right), \\
& \operatorname{Res}[f(z),-i]=\left.\frac{e^{i z}-1}{z(z-i)}\right|_{z=-i}=\frac{1}{2}(1-e) .
\end{aligned}
$$

b

What kind of singularity does $f(z)$ have at ∞ ?

Solution: For $t>1$ we have

$$
\begin{aligned}
& |f(t)| \leq \frac{2}{t+t^{3}} \rightarrow 0 \quad \text { as } t \rightarrow \infty \\
& |f(-i t)|=\frac{e^{t}-1}{t^{3}-t} \rightarrow \infty \quad \text { as } t \rightarrow \infty
\end{aligned}
$$

Therefore, $f(z)$ cannot have a removable singularity or a pole at ∞, so it has an essential singularity there.

c

For $r>1$ consider the curve

$$
\gamma_{r}(t)=r e^{i t}, \quad 0 \leq t \leq \pi
$$

Show that

$$
\int_{\gamma_{r}} f(z) d z \rightarrow 0 \quad \text { as } r \rightarrow \infty
$$

Solution: For any $z \in \mathbb{C}$ one has $\left|e^{i z}\right|=e^{-\operatorname{Im}(z)}$. If $|z|=r, \operatorname{Im}(z) \geq 0$ this gives

$$
|f(z)| \leq \frac{2}{r^{3}-r}
$$

The ML-estimate gives

$$
\left|\int_{\gamma_{r}} f(z) d z\right| \leq \pi r \cdot \frac{2}{r^{3}-r}=\frac{2 \pi}{r^{2}-1} \rightarrow 0 \quad \text { as } r \rightarrow \infty .
$$

d

Apply the residue theorem in the domain

$$
D_{r}=\{z \in \mathbb{C}:|z|<r, \operatorname{Im}(z)>0\}
$$

together with the results of \mathbf{a} and \mathbf{c} to compute the integral

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x+x^{3}} d x
$$

Solution: For $r>1$ the residue theorem gives

$$
2 \pi i \operatorname{Res}[f(z), i]=\int_{\partial D_{r}} f(z) d z=\int_{-r}^{r} f(x) d x+\int_{\gamma_{r}} f(z) d z
$$

Letting $r \rightarrow \infty$ we get

$$
\pi i\left(1-e^{-1}\right)=\int_{-\infty}^{\infty} f(x) d x
$$

Taking imaginary parts we obtain

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x+x^{3}} d x=\pi\left(1-e^{-1}\right)
$$

(Continued on page 5.)

Problem 6

a

Determine the number of zeros, counting multiplicity, of the function

$$
f(z)=e^{z}+5 z^{7}-2
$$

in the square

$$
R=\{z \in \mathbb{C}:|\operatorname{Re}(z)|<1,|\operatorname{Im}(z)|<1\}
$$

Solution: For any $z \in \partial D$ we have

$$
\left|e^{z}\right|=e^{\operatorname{Re}(z)} \leq e<3
$$

so

$$
\left|e^{z}-2\right| \leq\left|e^{z}\right|+2<5 \leq\left|5 z^{7}\right|
$$

By Rouché's theorem, the functions $f(z)$ and $g(z)=5 z^{7}$ have the same number of zeros in D, counting multiplicity. Since 0 is the only zero of $g(z)$ and this zero has order 7 , we conclude that $f(z)$ has 7 zeros in D counting multiplicity.

b

Show that if z_{0} is a zero of $f(z)$ of order $k \geq 1$ then \bar{z}_{0} is also a zero of $f(z)$ of order k.

Solution: Because $f(z)$ is given by a power series centred at the origin where all coefficients are real, we have

$$
\overline{f(z)}=f(\bar{z})
$$

The power series representation of $f(z)$ at z_{0} has the form

$$
f(z)=\sum_{n=k}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

with $a_{k} \neq 0$. Therefore,

$$
f(z)=\overline{f(\bar{z})}=\sum_{n=k}^{\infty} \bar{a}_{n}\left(z-\bar{z}_{0}\right)^{n}
$$

so \bar{z}_{0} is also a zero of $f(z)$ of order k.

c

How many of the zeros found in part a are real, and how many have positive imaginary part?

Solution: Because

$$
f(-1)=e^{-1}-7<0, \quad f(1)=e+3>0
$$

and $f^{\prime}(x)>0$ for x real, we see that $f(z)$ has exactly one real zero in D, and this zero is simple. Consequently, the number of zeros of $f(z)$ in D with positive imaginary part is $(7-1) / 2=3$, counting multiplicity.

