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Solution

Problem 1

The equilibrium points are solution of the system

3z +4y+a2y=0 (1)
—2z + 6y — 2y =0. (2)

Adding up the two equations, we get
-5+ 10y =0
which yields z = 2y. Hence, after plugging this in (1), we get
—6y +4y +2y° =0

which gives y(2y — 2) = 0. There are two equilibrium points: (0,0) and
(2,1). Let fi(z,y) = =3z 4+ 4y + xy and fo(z,y) = —2x + 6y — xy. The

linearization of the system around the equilibrium point Yy = [zo} is given
0
by Z' = JZ where
J=\op ok
ox oy
and Z =Y —Y,. Here, we obtain

J— —-3+y 4+
\—2-y 6—2)°

For (0,0), it yields

The eigenvalues are solutions of
A —3A-10=0

There are two distinct eigenvalues

347

A :
2
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which are positive. The equilibrium is a source. For the equilibrium (2, 1),

we obtain
-2 6
J—<_3 4>.

The eigenvalues are solutions of
A —2X+10=0

and we obtain two complex eigenvalues

246

A =1+ 3.

Since Re(A) > 0, it corresponds to a spiral source.

Problem 2 (weight 40%)

2a (weight 20%)

The matrix A has two complex eigenvalues A = 1 4 3i (see problem 1). A
complex eigenvector associated with A = 1 4 3¢ satisfies

(-3—3i 6) (”5) —0

2 . . . . .
so that u = 14i is an eigenvector. Two independent solutions are given

by Re(eMu) and Im(eMu). We have

141
= <cos(§>tc)oi(ig1(3t)> i <COS(32511(§2(375)')

Hence, the general solution is

Y(t) = Ad (cos(gtc)oi(ii?l(?)t)) + Be (cos(3i;n+(3§i)rl(3t).> (3

for any constant A and B.

eMu = e’ (cos(3t) + isin(3t)) ( 2 )

~—

2b (weight 10%)
We have to determine A and B in (3) such that

r0-()-4()+2(0)
We get A= B =1 and

4 {2cos(3t) + sin(3t)
Y = ( 2 cos(3t) > '
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2c (weight 10%)

A fundamental matrix solution is given by

i 2 cos(3t) 2sin(3t)
d(t)=e <cos(3t) —sin(3t) cos(3t) + Sin(3t)>

t4 is equal to

The exponential matrix e
e = a()®(0)7 L.

We compute ®(0) and ®(0)~*. We obtain

w-(3 )

and

Hence,
oAt cos(3t) — sin(3t) 2sin(3t)
a —sin(3t) cos(3t) + sin(3t)

Problem 3 (weight 40%)

3a (weight 10%)

1 1
The matrix < 2 > has two distincs eigenvalues \; = 2 and Ao = —2. The

() - ()

are eigenvectors for A\; and Ao, respectively. The general solution is

V() = A @) + Be 2 (_16> . (4)

3b (weight 20%)

vectors

The Hamiltonian is given by
H(t,z,u,p) = =32 — u? + p(z + u).

The function u +— H is concave so that %—Ij = 0 is a necessary and sufficient
condition for a maximizer. We have
OH

= —_9
90 u-+p

and, by the maximum principle, v* = §. We have

ab:x+u:a:+g

and, from the maximum principle,

‘—_%—61’_
p= or P
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Hence Y (t) = <;Eg > satisfies the ordinary differential equation given in 3a
and it follows from there that

z(t) = Ae* + Be™™,

y(t) = 24e* — 6Be™ 2.

Since z(0) = 0, we get A = —B and the system above rewrites
z(t) = A(e? — ™2, (5a)
y(t) = A(2e*" + 6e7%). (5b)
We have to determine A. Since z(In(2)) = —1, we get A = —%. Since

the function z — —322 + pz and v — —u? + pu are concave, the function
(z,u) — H is concave. By Mangasarian’s theorem, the conditions of the
maximum principle are not only necessary but also sufficient.

3c (weight 10%)

The terminal condition in this case is either

z(In(2)) = —1 and p(In(2)) >0 (6)
or
z(In(2)) > —1 and p(In(2)) = 0. (7)
The same derivation as in the previous question leads us to (5) and we have
to determine A. If z(In(2)) = —1, it follows the previous question that
A= —% and
10
In(2)) = ——
p(in(2)) = - 17

so that (6) does not hold. If p(In(2)) = 0, we obtain A = 0 and
p(t) = z(t) = 0. Hence, (7) is satisfied, as z(In(2)) =0 > —1, and

() =u"(t) =0

is a solution which fullfills the conditions of the maximum principle. Since
the function (z,u) — H is concave, we know, by Mangasarian’s theorem,
that this pair solves also the original optimal control problem.



