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Problem 1

1a

The equilibrium points satisfy

4y3 − 4xy = 0,

2y2 − 2x3 = 0.

The �rst equation gives 4y(y2− x) = 0 and either y = 0 or x = y2. If y = 0,
the second equation yields x = 0. If x = y2, then the second equation gives

x(1− x2) = 0, that is, x = 0 or x = ±1. If x = −1, then y2 = −1 and there

does not exist an equilibrium point in this case. If x = 1, we get y = ±. In
conclusion, there are 3 equilibrium points: (0, 0), (1, 1), (1,−1).

We linearize around (1, 1). We compute the Jacobian:

J(x, y) =

(
−4y 12y2 − 4x
−6x2 4y

)
.

For x = y = 1, we get

J(1, 1) =

(
−4 8
−6 4

)
.

The eigenvalues satis�es λ2 + 32 = 0 and therefore they are complex

conjugate numbers with zero real value. In this case, we cannot conclude if

the equilibrium of the originial system is an attractive or repulsive point.

1b

Let M(x, y) = 2x3 − 2y2 and N(x, y) = 4y3 − 4xy. We can rewrite the

ordinary di�erential equation as the form M dx + N dy = 0. We have
∂M
∂y = −4y = ∂N

∂x and therefore the form is exact and there exists a function

F (x, y) such that ∂F
∂x = M and ∂F

∂y = N . Then,

∂F

∂x
= 2x3 − 2y2
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implies

F =
1

2
x4 − 2y2x+ g(y)

for some unknown function g(y). We di�erentiate this result with respect to

y and obtain −4yx + g′(y) = 4y3 − 4xy. Therefore, g(y) = y4 + C and the

solution of the ordinary di�erential equation are implicitely given by

F =
1

2
x4 − 2y2x+ y4 + C

for some constant C. We can rewrite F as

F = (x− y2)2 +
1

2
(x2 − 1)2 + C − 1

2

1c

Let us consider a solution (x(t), y(t)). We have ẋ = M(x, y) and ẏ =
−M(x, y). Hence,

d

dt
F (x(t), y(t)) =

∂F

∂x
M +

∂F

∂y
(−N) = NM −MN = 0

and therefore F (x(t), y(t)) is a constant. Let us assume that the equilibrium

(1, 1) is a sink or spiral sink. Then, there exists a trajectory (x(t), y(t))
starting close but away from (1, 1), that is, (x(0), y(0)) 6= (1, 1) such that

limt→∞ x(t) = 1 and limt→∞ y(t) = 1. We have

(x(t)− y2(t))2 +
1

2
(x2(t)− 1)2 = C

for some constant C. Since (x(0), y(0)) 6= (1, 1), we have C > 0. By letting

t tend to in�nity, we obtain 0 = C, which is a contradiction and therefore

the equilibrium is not an attractive point.

Problem 2

We compute the eigenvalue of A. We have to solve∣∣∣∣∣∣
2− λ 1 1

0 3− λ 1
0 −1 1− λ

∣∣∣∣∣∣ = 0.

We expand this determinant and obtain

(2− λ)((3− λ)(1− λ) + 1) = 0

which yields (2 − λ)(λ − 2)2 and λ = 2 is an eigenvalue with multiplicity

3. We compute the eigenvector space. We have that u = [x, y, z]t is an

eigenvector if

(A− λI)u =

0 1 1
0 1 1
0 −1 −1

xy
z

 = 0
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This system of equations is equivalent to

(
0 1 1

)xy
z


so that the eigenvector space is of dimension 2 for which

u1 =

1
0
0

 , u2

 0
1
−1


form a basis. We have to compute a generalized eigenvector v. It satis�es

(A− λI)k−m+1v = 0

where k = 3 is the multiplicity of the eigenvalue, m = 2 is the dimension of

the eigenvector space. We get

(A− λI)k−m+1 = (A− λI)2 = 0

and we choose v = [0, 1, 0]t, which is linearly independent of u1 and u2. We

set v2 = v and

v1 = (A− λI)v2 =

 1
1
−1


The vectors v1, v2 form a chain. The general solution of the ordinary

di�erential equation is given by

X(t) = C1

1
0
0

 e2t + C2e
2t

 1
1
−1

+ C3e
2t

 1
1
−1

 t+

0
1
0


for any constants C1, C2, C3. For the initial value [0, 1, 0], we have to solve1 1 0

0 1 1
0 −1 0

C1

C2

C3

 =

0
1
0


which gives C1 = C2 = 0, C3 = 1 and the solution is

X(t) = e2t

 1
1
−1

 t+

0
1
0

 .

Problem 3

3a

Let H = (x2 − u2) + pu. The optimal pair (x∗, u∗) satis�es

H(t, x∗(t), u∗(t), p(t)) = max
u∈[0,1]

H(t, x∗(t), u, p(t))
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and

ṗ = −∂H
∂x

= −2x

and

p(π) = 0.

Since ẋ = u and u ∈ [0, 1], x is an increasing function and therefore

x(t) ≥ x(0) = 1 for ∈ [0, π]. Thus ṗ ≤ −2 and p is strictly decreasing.

3b

We have ∂H
∂u = −2u+ p = 0 if u = p

2 . Since the function u 7→ H is concave,

the maximum is attained for u∗ = p
2 . This value of u

∗ belongs to [0, 1] when
p ∈ [0, 2]. For p /∈ [0, 2], the maximum is attained at the boundaries of the

interval [0, 1] and we have to compare the values of H for u = 0 and u = 1.
We have

H(1)−H(0) = x2 − 1 + p− x2 = p− 1.

Hence, for p < 0, H(1) < H(0) and the maximum is attained for u∗ = 0.
For p > 2, H(1) > H(0) and the maximum is attained for u∗ = 1.

3c

We have p(π) = 0. By continuity of p, there exists a t∗ < π such that

p(t) ∈ [−2, 2] for t ∈ [t∗, π]. Since, the function p is strictly decreasing, we

must have p(t) ∈ [0, 2].

For p ∈ [0, 2], u∗ = p
2 and we have to solve the system of ordinary di�erential

equations

ẋ =
p

2
ṗ = −2x.

We di�erentiate the second equation and plug in the �rst one. We obtain

p̈+ p = 0.

The general solution is p(t) = A cos(t) + B sin(t). Since p(π) = 0, we get

p(t) = B sin(t). Then,

x(t) = − ṗ
2

= −B
2

cos(t)

and x(π) = x̄ gives x̄ = −B
2 cos(π), that is, B = 2x̄. Finally, we obtain

x(t) = −x̄ cos(t)

p(t) = 2x̄ sin(t).

3d

Let us assume that t∗ = 0. Then we must have x(0) = 1 = −x̄ cos(0). It

gives x̄ = −1 and p(t) = −2 sin(t). However, this last result contradicts the
fact that p(t) ∈ [0, 2] for t ∈ [t∗, π].

We have p(t∗) = 2 if and only if 2x̄ sin(t∗) = 2, that is, x̄ sin(t∗) = 1
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3e

Since p is strictly decreasing, we have p(t) > 2 for t ∈ [0, t∗). Then, u∗ = 1
and we have to solve

ẋ = 1

ṗ = −2x.

It gives

x(t) = t+ 1,

as x(0) = 1, and ṗ = −2x = −2t− 2 implies

p(t) = −t2 − 2t+ p̄.

By continuity of the functions p and x at t∗, we get

t∗ + 1 = −x̄ cos(t∗)

2x̄ sin(t∗) = 2 = −t2∗ − 2t∗ + p̄

Thus, x̄ = 1
sin(t∗)

and the �rst equation above gives

t∗ + 1 = − 1

tan(t∗)
.

We get p̄ = 2 + t2∗ + 2t∗. The optimal control u∗ is given by

u∗(t) =

{
1 if t ∈ [0, t∗],
sin(t)
sin(t∗)

if t ∈ [t∗, π].


