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Problem 1.

We observe that

A = 2I +N, N =

0 1 0

0 0 1

0 0 0

 , N2 =

0 0 1

0 0 0

0 0 0

 , N3 = 0

Since IN = NI, the matrix exponential is

etA = et(2I+N) = e2tIetN = e2t(I + tN +
1

2
t2N2)

= e2t

1 t 1
2
t2

0 1 t

0 0 1


Consequently, the solution of the initial value problem is

x(t) = e2tA

0

1

1

 = e2t

t+ 1
2
t2

1 + t

1


An alternative is to use that the eigenvalues are all equal to 2 (A is upper

triangular so the eigenvalues are the entries on the main diagonal). The

eigenspace is seen to be one-dimensional, spanned by v1 = [1, 0, 0]T . Hence

two independent generalized eigenvectors are needed. First (A − 2I)3 = 0,

so that any vector v3 6= 0 that is linearly independent of v1 may be tried.

We take v3 = [0, 0, 1]T . Then

(A− 2I)v3 =

0 1 0

0 0 1

0 0 0


0

0

1

 =

0

1

0

 = v2

Finally,

(A− 2I)v2 =

1

0

0

 = v1

1



Using the above generalized eigenvectors we find the general solution

x(t) = ae2tv1 + be2t(tv1 + v2) + ce2t(
1

2
t2v1 + tv2 + v3)

Then

x(0) = av1 + bv2 + cv3 = [a, b, c]T = [0, 1, 1]T ⇔ a = 0, b = c = 1.

Hence we readily derive the same solution as above.

Problem 2

(a) The critical points occur for

y =
√
x/ε (if ε 6= 0)

and

2x+ y/
√
ε− 1 = 0

This leads to 2x+ 1/ε− 1 = 0, and the only critical point is

x =
1

2
(1− 1

ε
), y =

1

ε
√

2
(1− 1

ε
)
1
2 .

Since x > 0 we must have 1
ε
< 1, that is ε > 1 or ε < 0.

(b) Here

dy

dx
=
ẏ

ẋ
=

2x+ y√
x
− 1

2εy − 2
√
x
,

or

(2x+
y√
x
− 1) dx+ (2

√
x− 2εy) dy = 0,

which is of the type Pdx+Qdy = 0. Such differential forms are exact if and

only if ∂P
∂y

= ∂Q
∂x
. In the present case this holds true for all ε, both expressions

being equal to 1√
x
. Hence there is a function F (x, y) such that ∂F

∂x
= P and

∂F
∂y

= Q. Integration of P wrt. x yields

F (x, y) = x2 + 2y
√
x− x+ A(y),

and then
∂F

∂y
= 2
√
x+ A′(y) = 2

√
x− 2εy, A′(y) = −2εy.

Thus

A(y) = −εy2 + k.

Now the solutions of our differential equation are given by F (x, y(x)) = C,

or

(∗) x2 − εy2 + 2y
√
x− x = C
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(c) Let ε = −1. Then the critical point is (1,−1). We complete the squares

in (∗) and derive(√
−εy +

√
x
)2

+ (x− 1

2
(1− 1

ε
))2 = K (K a constant)

With ε = −1 this becomes

(∗∗)
(
y +
√
x
)2

+ (x− 1)2 = K

If the critical point were repulsive, then x → ∞ or y → ±∞ as t → ∞.

This clearly contradicts (∗∗) since its right hand side is constant. Similarly,

it is impossible to have x→ 1 and y → −1 as t→∞ (the constant solution

x = 1, y = −1 cannot occur since the solution curves are supposed not to

pass through the critical point.) Thus the critical point is not a sink. (We

conclude that the critical point is either a stable center or an asymptotic

stable spiral point.)

(d) We let ε = 1 in (1):

(i) ẋ = 2y − 2
√
x

(ii) ẏ = 2x+
y√
x
− 1

From (i)

y =
1

2
(ẋ+ 2

√
x) =

1

2
ẋ+
√
x, ẏ =

1

2
ẍ+

1

2

ẋ√
x

We combine this with (ii):

1

2
ẍ+

ẋ

2
√
x

= 2x+
1
2
ẋ+
√
x

√
x

− 1 = 2x+
ẋ

2
√
x

or

ẍ− 4x = 0

Hence

x(t) = Ae2t +Be−2t

and

y(t) =
1

2
ẋ+
√
x = Ae2t −Be−2t +

√
Ae2t +Be−2t

Problem 3

We will solve

max

∫ 1

0

(x− x2 − u2) dt, ẋ = −2
√
x− 2u, x(0) = 1, x(1) = 0.

3



(a) The Hamiltonian for this (normal) problem is

H = H(t, x, u, p) = x− x2 − u2 + 2p(−
√
x− u)

If x = x∗, u = u∗ form an optimal pair, then by the Maximum Principle there

is a continuous and piecewise C1−function p such that

∂H

∂x
= −ṗ.

That is,

ṗ = 2x+ px−
1
2 − 1.

Moreover, u = u∗ must maximize H(t, x∗(t), u, p(t)) for each t ∈ [0, 1]. Hence

(as the range of u = u(t) is all of R ) we must have ∂H
∂u

= 0 or

−2u− 2p = 0, u = −p

Since ∂2H
∂u2 = −2 < 0, this yields a maximum. We combine this with the

relation ẋ = −2
√
x− 2u and obtain the system

(I)

ẋ = 2p− 2
√
x

ṗ = 2x+ p√
x
− 1 , x > 0,

(b) The system (I) is (1) of Problem 2 with y = p and ε = 1. The solution

for x = x∗ of 2(d) was

x(t) = Ae2t +Be−2t

Here

x(0) = A+B = 1

and

x(1) = Ae2 +Be−2 = 0

which give

B = −e4A, A(1− e4) = 1,

A =
1

1− e4
, B = − e4

1− e4
=

e4

e4 − 1

Hence

x∗(t) =
1

1− e4
(e2t − e4−2t) =

e2

e4 − 1
(e2−2t − e2t−2)

Then

u∗(t) = −p(t) = −1

2
ẋ(t)−

√
x(t)

=
1

e4 − 1
(e2t + e4−2t)− 1√

e4 − 1

√
e4−2t − e2t
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This is the only possible candidate of an optimal pair.

(c) Let R(t) = {(x, u) ∈ R2 : 4x3/2 ≥ p(t)}
We proceed to show, for each t, H(t, x, u, p(t)) is concave with respect to

(x, u) in the region R(t) by using the 2nd derivative test. Let t ∈ [0, 1] and

put p = p(t). Here
∂2H

∂u2
= −2 < 0

and
∂2H

∂x2
= −2 +

1

2
px−3/2 ≤ 0⇔ px−3/2 ≤ 4⇔ p ≤ 4x3/2

Finally,
∂2H

∂x2
∂2H

∂u2
− ∂2H

∂x∂u
= −2

∂2H

∂x2
≥ 0⇐⇒ px−3/2 ≤ 4

This shows the convexity statement.

(d) Assume that the solution (x∗, u∗) from (b) belongs to W this is the case

if and only if 4(x∗)3/2 < p(t) for all t ∈ [0, 1] and may be proved as indicated

below.

Now the function (x, u) 7→ H(t, x, u, p(t)), W → R is concave for each t ∈
[0, 1]. By Mangasarian’s Theorem the pair (x∗, u∗) from (b) is optimal among

the elements of W : The proof of Mangasarian’s Theorem works equally well

if concavity of H holds only in an open, convex subset of the xu−plane. In

the present case the region

{(x, u) : x3/2 >
1

4
p}

is open and convex. (If p > 0 this is the half plane {(x, u) : x > (1
4
p)2/3},

and if p < 0 it is the set R2.)

For the sake of completeness we finally prove that p(t) < 4x3/2, for all

t ∈ [0, 1], and hence the solution (x∗, u∗) from (b) belongs to W.

p(t) =
(e4−2t − e2t

e4 − 1

) 1
2 −

(e4−2t − e2t
e4 − 1

)
<

4

(e4 − 1)3/2
(e4−2t − e2t)3/2 = 4x3/2

m
(e4−2t − e2t)

1
2 (e4 − 1)− (e4−2t + e2t)(e4 − 1) < 4(e4−2t − e2t)3/2

We let y = e2t, k = e4. Then the last inequality is equivalent to:

(ky−1 − y)1/2(k − 1)− 4(k−1 − y)3/2 < (ky−1 + y)(k − 1)

or

(k − 1)− 4(ky−1 − y) <
ky−1 + y

(ky−1 − y)1/2
(k − 1)
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Let

φ(y) = (k − 1)− 4(ky−1 − y),

ψ(y) =
ky−1 + y

(ky−1 − y)1/2
(k − 1).

Then

φ′(y) = −4(−ky−2 − 1) = 4(k−2 + 1) > 0.

Hence φ increases and its maximum is

φmax = φ(e2) = k − 1.

Therefore it suffices to prove that

ψmin > φmax = k − 1.

Now

ψ′(y) =
k − 1

ky−1 − y
[(1−ky−2)(ky−1−y)1/2+

1

2
(ky−1+y)(ky−1−y)−1/2(ky−2+1)]

=
(k − 1)y

(ky−1 − y)3/2
[
1

2
(ky−2 + 1)2 − (1− ky−2)2]

=
k − 1

(ky−1 − y)3/2
[−1

2
k2y−4 + 3ky−2 − 1

2
]

Let f(y) = −k2y−4 + 6ky−2 − 1. Then

ψ′(y) =
1
2
(k − 1)y

(ky−1 − y)3/2
f(y) = r(y)f(y),

where r(y) > 0. Thus the sign and zeros of ψ′ are completely determined by

f . Next we put u = y−2, y = u−1/2, f(y) = f(u−1/2) = g(u). Then

g(u) = −k2u2 + 6ku− 1 = 0

if and only if

u =
1

2k2
[6k ±

√
32k2] =

1

k
[3± 2

√
2]

Since u is in [1/k, 1] we must use the + sign in front of the square root. Here

g(1/k) = 4 > 0 and g(1) = −k2+6k−1 = −e8+6e4−1 < 0. Hence ψ′(y) > 0

for y ∈ (e2/(3 + 2
√

2)1/2, e2) and ψ′(y) < 0 for y ∈ (1, e2/(3 + 2
√

2)1/2). Let

a = (3 + 2
√

2)1/2. Then

ψmin = ψ(e2/a) =
e2a+ e2/a

(e2a− e2a−1)1/2
(e4 − 1)

=
e(a+ a−1)

(a− a−1)1/2
(e4 − 1) =

e(2.82...)

1.41...
(e4 − 1) > e4 − 1 = φmax

This shows that p(t) < 4x3/2, for all t ∈ [0, 1].

THE END
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