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Problem 1.

We observe that
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Since IN = N1, the matrix exponential is
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Consequently, the solution of the initial value problem is

0 t 4 5t
x(t) = |1 = | 141
1 1

An alternative is to use that the eigenvalues are all equal to 2 (A is upper
triangular so the eigenvalues are the entries on the main diagonal). The
eigenspace is seen to be one-dimensional, spanned by v; = [1,0,0]7. Hence
two independent generalized eigenvectors are needed. First (A — 2I)3 = 0,
so that any vector v3 # 0 that is linearly independent of vi; may be tried.
We take v3 = [0,0,1]7. Then

0 1 0] |0 0
(A=2)vg= [0 0 1| |0 = |1| = Va2
0 0 Of |1 0
Finally,
1
(A—21)va = |0| =v1
0



Using the above generalized eigenvectors we find the general solution
x(t) = ae*vy + be* (tvy + va) + cth(%t2V1 +tvy + v3)
Then
x(0) = avy +bvy +cvg = [a,b,c]" =[0,1,1]' @ a=0,b=c=1.

Hence we readily derive the same solution as above.

Problem 2

(a) The critical points occur for

y= /e (ife #0)

and

204+ y/\e—1=0
This leads to 2z + 1/e — 1 = 0, and the only critical point is

le(l_l) y:L(l_l)%'
2 g”’ V2 5
Since x > 0 we must have%<1, that ise > 1 or e < 0.
(b) Here
dy 5 220+%-1
dv & 2ey-2Vr
or

(2x+%—1)dx+(2\/§—2£y)dy20,

which is of the type Pdz + Qdy = 0. Such differential forms are exact if and

only if 22 = 99 Tn the present case this holds true for all £, both expressions
dy oxr

being equal to \/LE Hence there is a function F(x,y) such that ‘?)—i = P and

%—I; = (. Integration of P wrt. x yields

F(z,y) = 2* + 2yv/x — z + Ay),

and then OF
8_y =2Vx + A'(y) = 2V — 2ey, A'(y) = —2ey.
Thus
Aly) = —ey® + k.

Now the solutions of our differential equation are given by F(x,y(z)) = C,

or
(%) 2=+ 2z —ax=C



(c) Let e = —1. Then the critical point is (1, —1). We complete the squares

in (x) and derive

(\/__5y +z )2 + (z — %(1 — 1))2 =K (K a constant)

£

With € = —1 this becomes
2
() (y+vE ) +@-1P=K

If the critical point were repulsive, then x — oo or y — +o00 as t — o0.
This clearly contradicts (#x) since its right hand side is constant. Similarly,
it is impossible to have z — 1 and y — —1 as t — oo (the constant solution
x = 1,y = —1 cannot occur since the solution curves are supposed not to
pass through the critical point.) Thus the critical point is not a sink. (We
conclude that the critical point is either a stable center or an asymptotic
stable spiral point.)

(d) Welet e =11in (1):

(2) & =2y -2V
() y:2x+%—1
From (7) , ,
?/25('+2\/5):§55+\/57 Y=

We combine this with (i):

T+

or
T —4x =
Hence
x(t) = Ae* + Be ™
and )
y(t) = §x +Vr = Ae* — Be™? +\/Ae?t + Be 2
Problem 3

We will solve
1
max/ (x —2® —u?)dt, & = -2z — 2u, 2(0) = 1, (1) = 0.
0

3



(a) The Hamiltonian for this (normal) problem is
H=Htx,up) =z —z>—u®+2p(—/1 —u)
If v = 2*,u = u* form an optimal pair, then by the Maximum Principle there
is a continuous and piecewise C'—function p such that
oH .
or ¥
That is,
p:2x+px_% -1

Moreover, u = «* must maximize H (¢, x*(t), u, p(t)) for each ¢ € [0, 1]. Hence

(as the range of u = u(t) is all of R ) we must have 22 =0 or

—2u—2p=0, u=—p

Since 8;7[;1 = —2 < 0, this yields a maximum. We combine this with the
relation © = —24/2 — 2u and obtain the system

T =2p—2\x

p=22r+=—-1, x>0,

(D

(b) The system (I) is (1) of Problem 2 with y = p and € = 1. The solution
for x = x* of 2(d) was
z(t) = Ae* + Be ™™

Here
z(0)=A+B=1
and
z(1) = Ae* + Be > =0
which give
B=—e'A, A(l—¢*) =1,
1 et et
A = B = — —=
1 —et’ 1—et et—-1
Hence
* 1 2t 4-2t e? 292t 2t—2
2(l) = T () = (e )
Then
W' (t) = —p(t) = —5i(t) — v/2(0)
1 2t 4-92¢ 1 =
:—64_1(6 +e ) — — ed=2t _ g2t



This is the only possible candidate of an optimal pair.
(c) Let R(t) = {(z,u) € R? : 42%/2 > p(t)}

We proceed to show, for each ¢, H(t,z,u,p(t)) is concave with respect to
(z,u) in the region R(t) by using the 2nd derivative test. Let ¢ € [0, 1] and
put p = p(t). Here

0*H
Dz -2<0
and 2 )
= 24+ pr??<0epr?? <4 o p< a2’
0x? 2
Finally, Vo ) )
0O°HO*H O0°H 0°H _3/9
dx® ou?  dxdu :_2W 20 pr <4

This shows the convexity statement.

(d) Assume that the solution (x*,u*) from (b) belongs to W this is the case
if and only if 4(2*)3/2 < p(t) for all t € [0, 1] and may be proved as indicated
below.

Now the function (z,u) — H(t,z,u,p(t)), W — R is concave for each t €
[0,1]. By Mangasarian’s Theorem the pair (z*, v*) from (b) is optimal among
the elements of W: The proof of Mangasarian’s Theorem works equally well
if concavity of H holds only in an open, convex subset of the xru—plane. In
the present case the region

{(z,u) : 2% > ip}

is open and convex. (If p > 0 this is the half plane {(z,u) : z > (3p)*?},
and if p < 0 it is the set R?.)

For the sake of completeness we finally prove that p(t) < 422, for all
t € [0, 1], and hence the solution (z*,u*) from (b) belongs to W.
4-2t _ 2t 1 4-2t _ 2t

€ —€7\2 € — € 4 42t 2t7\3/2 3/2
o) = (o) = (o) < gt e =
i}

(64_2t _ 6275)%(64 _ 1) _ (64_2t + €2t)(€4 _ 1) < 4(64_2t _ 62t)3/2

We let y = €2k = e*. Then the last inequality is equivalent to:
(ky™ = )2 (k = 1) = 4(k™" = )** < (ky™" +y)(k = 1)

or
ky ' +y

(k—1)—4(ky™ —y) < Gy T — )

(k-1)



Let

o(y) = (k—1) —4(ky™" —y),
Ey~! +
N (/lcygj1 - ’y?l/z(k -V
Then

O (y) = —4(—ky 2 —1) =42 +1) > 0.
Hence ¢ increases and its maximum is
Brmax = () =k — 1.

Therefore it suffices to prove that

¢min > quax =k—1.

Now
¢’(y) = kyk_l—_l y[(1—ky‘2)(k'y—l_y)l/2+%(ky—1+y)(ky—l_y>—1/2<ky—2+1)]
k—1 1
- ﬁ[é“ﬂf” 17— (1= ky )]
k-1 1 1

= W[—ﬁkﬂ?ﬁl +3ky ™ — 5]

Let f(y) = —k*>y~* +6ky~2 — 1. Then
!
Vy) = ﬁf@/) =1(y)f(y),

where 7(y) > 0. Thus the sign and zeros of ¢ are completely determined by
f. Next we put u =y 2,y =u""2, f(y) = f(u"/?) = g(u). Then

g(u) = —k*u® + 6ku—1=0

if and only if

= #[ﬁki V32k2] = %[312\/5]

Since u is in [1/k, 1] we must use the + sign in front of the square root. Here
g(1/k) =4>0and g(1) = —k*+6k—1 = —e®+6e*—1 < 0. Hence ¢'(y) > 0
for y € (e2/(3 4 2v/2)Y2,¢?) and ¢/(y) < 0 for y € (1,€2/(3 4+ 2v/2)"/?). Let
a = (34 2v/2)"2. Then

u

2 2
Umin = V(€?/a) = (622 Ci—;z/lc;l/? ("= 1)

This shows that p(t) < 42*/2, for all t € [0, 1].

THE END



