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All 10 part questions will be weighted equally.

Problem 1 First order equations

1a

Solve the initial value problem

y′ − 2xy = 4x3ex
2

, y(0) = 0.

Answer:
y′ + P (x)y = Q(x),

where
P (x) = −2x, Q(x) = 4x3ex

2

.

The integrating factor is
e
∫
P dx = e−x2

.

Multiplying the equation by this gives

(e−x2

y)′ = 4x3,

and so
e−x2

y = x4 + C,

and
y = ex

2

(x4 + C).

The initial condition implies C = 0, and so

y = ex
2

x4.

(Continued on page 2.)
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1b

Solve the equation
2xyy′ = x2 + 2y2

by making the substitution v = y/x, or otherwise.

Answer:
2y′ = (x/y) + 2(y/x).

Let v = y/x. Then y = xv and y′ = xv′ + v, and so

2(xv′ + v) = 1/v + 2v,

and so
2xv′ = 1/v,

and so

2v dv =
dx

x
,

and so
v2 = lnx+ C,

and so
y2 = x2(lnx+ C).

Problem 2 Linear systems

Using the eigenvalue method, find the particular solution to the linear system
x′(t) = Ax(t), with x(0) = x0, where

A =

[

2 −5
4 −2

]

, x0 =

[

5
6

]

.

Answer:
|A− λI| = (2− λ)(−2− λ) + 20 = λ2 + 16,

and so λ = ±4i. It is sufficient to use λ = 4i. To obtain an eigenvector we
solve

(A− 4iI)v = 0,

i.e.,

A =

[

2− 4i −5
4 −2− 4i

] [

a
b

]

= 0,

and both equations are the same, and we can solve the first one by setting
a = 5 and b = 2 − 4i, and then the eigenvector is v = [5, 2 − 4i]T . Then a
(complex) solution to the equation is

x(t) = ve4it =

([

5
2

]

+ i

[

0
−4

])

(cos 4t+ i sin 4t) = x1(t) + ix2(t),

(Continued on page 3.)
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where

x1(t) =

[

5
2

]

cos 4t−
[

0
−4

]

sin 4t, x2(t) =

[

5
2

]

sin 4t+

[

0
−4

]

cos 4t,

and the general solution to the equation is

x(t) = c1x1(t) + c2x2(t).

For the particular solution, the initial condition gives
[

5
6

]

= c1

[

5
2

]

+ c2

[

0
−4

]

,

whose solution is c1 = 1, c2 = −1, and hence,

x(t) =

[

5 cos 4t− 5 sin 4t
6 cos 4t+ 2 sin 4t.

]

Problem 3 Matrix exponential

3a

Express the solution x(t), t ≥ 0, to the initial value problem

x′(t) = Ax(t) + f(t), x(0) = x0,

in terms of the matrix exponential etA, where x(t), f(t), and x0 are vectors
in R

n, and A is a matrix in R
n×n.

Answer:

x(t) = etAx0 +

∫

t

0

e(t−s)Af(s) ds.

3b

Find etA in the case that A is the matrix in Problem 2.
Answer: We use the fact that

etA = Φ(t)Φ(0)−1,

where Φ(t) is the fundamental matrix solution

Φ(t) =
[

x1(t) x2(t)
]

,

which is

Φ(t) =

[

5 cos 4t 5 sin 4t,
2 cos 4t+ 4 sin 4t 2 sin 4t− 4 cos 4t

]

.

Since

Φ(0) =

[

5 0
2 −4

]

, Φ(0)−1 = − 1

20

[

−4 0
−2 5

]

,

we find

etA = −1

4

[

−4 cos 4t− 2 sin 4t 5 sin 4t
−4 sin 4t 2 sin 4t− 4 cos 4t

]

.

(Continued on page 4.)
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Problem 4 Optimal control

Consider the problem

max

∫ 1

0

(1− u(t))x(t) dt, ẋ(t) = 2u(t)x(t),

x(0) = 3, x(1) free,

with u(t) ∈ U := [0, 1], t ∈ [0, 1].

4a

If (x, u) is any admissible pair for this problem, explain why x(t) > 0 for all
t ∈ [0, 1].

Answer: If not, since x is continuous, there is some t∗ in (0, 1] such that
x(t∗) = 0. Since x(0) > 0 we can further suppose that t∗ is the smallest
such t∗. Then by the differential equation and the control restriction u ∈ U ,
ẋ(t) ≥ 0 for t ∈ [0, t∗] and so x(t∗) ≥ x(0) = 3, which is a contradiction.

4b

If the pair (x∗(t), u∗(t)) solves the problem, use the maximum principle to
show that

u∗(t) =

{

1, t < 1/2;

0, t > 1/2.

Answer: The Hamiltonian is

H = (1− u)x+ 2pux = x(1 + (2p− 1)u),

with p(t) the adjoint function. Therefore, due to the control restriction U
and the fact that x ≥ 0, if p(t) > 1/2, H is maximized by u = u∗ = 1, and if
p(t) < 1/2, H is maximimized by u = u∗ = 0.

Since

ṗ = −∂H∗

∂x
= −(1 + (2p− 1)u∗),

we see that if p(t) > 1/2,

ṗ(t) =

{

−2p(t), p(t) > 1/2;

−1, p(t) ≤ 1/2.
(1)

Thus p is monotonically decreasing in [0, 1]. Since x(1) is free, the
transversality condition for p is p(1) = 0. This shows that there is some
t∗ ∈ [0, 1) such that p(t) < 1/2 for t > t∗. We can solve for p in the
subinterval [t∗, 1]. Since ṗ(t) = −1 and p(1) = 0, we have p(t) = 1− t in this
subinterval, and since p(t∗) = 1/2, we find that t∗ = 1/2.

(Continued on page 5.)
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4c

Find x∗.

Answer: Since u∗(t) = 1 for t < 1/2, solving the equation ẋ = 2ux = 2x in
the subinterval [0, 1/2] with the initial condition x(0) = 3 gives x(t) = 3e2t.
For x in the subinterval [1/2, 1], we have the equation ẋ = 2ux = 0 and the
initial condition x(1/2) = 3e from the first subinterval, which gives x(t) = 3e
for t ∈ [1/2, 1].

4d

Show that the candidate (x∗, u∗) for optimality is indeed optimal.

Answer: If H is concave in x and u we can use the Mangasarian sufficiency
theorem to show that (x∗, u∗) is optimal. However, since H contains the
product term xu, it is not concave. However, we can try the weaker condition
that

Ĥ(x, p(t), t) := max
u∈U

H(x, u, p(t), t)

is concave in x (the Arrow sufficiency theorem). Since

Ĥ(x, p(t), t) =

{

−2p(t)x, t < 1/2;

−x, t ≥ 1/2,
(2)

it is concave in x for all t ∈ [0, 1], and so Arrow’s theorem applies.

Problem 5 Dynamical systems

Consider the non-linear system

dx

dt
= xy − 2,

dy

dt
= x− 2y.

Find the critical points, their types, and stabilities.

Answer: The solutions to

xy − 2 = x− 2y = 0,

are (x, y) = (2, 1) and (x, y) = (−2,−1). The Jabobian of (f, g), f(x, y) =
xy − 2, g(x, y) = x− 2y, is

J(x, y) =

[

y x
1 −2

]

.

Let

J = J(2, 1) =

[

1 2
1 −2

]

.

Then
|J − λI| = (1− λ)(−2− λ)− 2 = λ2 + λ− 4,

(Continued on page 6.)
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and so λ = (−1±
√
17)/2. Since the eigenvalues are real, with one negative,

one positive, (2, 1) is a saddle point, which is unstable.
Let

J = J(−2,−1) =

[

−1 −2
1 −2

]

.

Then
|J − λI| = (−1− λ)(−2− λ) + 2 = λ2 + 3λ+ 4,

and so λ = (−3 ±
√
7i)/2. Since the eigenvalues are a conjugate pair, with

negative real part, (−2,−1) is a sprial sink, which is asympotically stable.

Good luck!


