UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in MAT2440 - Differential equations and optimal control theory

Day of examination: 11 June 2015
Examination hours: 0900-1300
This problem set consists of 6 pages.
Appendices: None
Permitted aids: None

> Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 10 part questions will be weighted equally.

Problem 1 First order equations

1a
Solve the initial value problem

$$
y^{\prime}-2 x y=4 x^{3} e^{x^{2}}, \quad y(0)=0
$$

Answer:

$$
y^{\prime}+P(x) y=Q(x),
$$

where

$$
P(x)=-2 x, \quad Q(x)=4 x^{3} e^{x^{2}} .
$$

The integrating factor is

$$
e^{\int P d x}=e^{-x^{2}} .
$$

Multiplying the equation by this gives

$$
\left(e^{-x^{2}} y\right)^{\prime}=4 x^{3},
$$

and so

$$
e^{-x^{2}} y=x^{4}+C,
$$

and

$$
y=e^{x^{2}}\left(x^{4}+C\right) .
$$

The initial condition implies $C=0$, and so

$$
y=e^{x^{2}} x^{4} .
$$

1b

Solve the equation

$$
2 x y y^{\prime}=x^{2}+2 y^{2}
$$

by making the substitution $v=y / x$, or otherwise.
Answer:

$$
2 y^{\prime}=(x / y)+2(y / x) .
$$

Let $v=y / x$. Then $y=x v$ and $y^{\prime}=x v^{\prime}+v$, and so

$$
2\left(x v^{\prime}+v\right)=1 / v+2 v
$$

and so

$$
2 x v^{\prime}=1 / v
$$

and so

$$
2 v d v=\frac{d x}{x}
$$

and so

$$
v^{2}=\ln x+C
$$

and so

$$
y^{2}=x^{2}(\ln x+C) .
$$

Problem 2 Linear systems

Using the eigenvalue method, find the particular solution to the linear system $\boldsymbol{x}^{\prime}(t)=A \boldsymbol{x}(t)$, with $\boldsymbol{x}(0)=\boldsymbol{x}_{0}$, where

$$
A=\left[\begin{array}{ll}
2 & -5 \\
4 & -2
\end{array}\right], \quad \boldsymbol{x}_{0}=\left[\begin{array}{l}
5 \\
6
\end{array}\right]
$$

Answer:

$$
|A-\lambda I|=(2-\lambda)(-2-\lambda)+20=\lambda^{2}+16
$$

and so $\lambda= \pm 4 i$. It is sufficient to use $\lambda=4 i$. To obtain an eigenvector we solve

$$
(A-4 i I) \boldsymbol{v}=0
$$

i.e.,

$$
A=\left[\begin{array}{cc}
2-4 i & -5 \\
4 & -2-4 i
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=0
$$

and both equations are the same, and we can solve the first one by setting $a=5$ and $b=2-4 i$, and then the eigenvector is $\boldsymbol{v}=[5,2-4 i]^{T}$. Then a (complex) solution to the equation is

$$
\boldsymbol{x}(t)=\boldsymbol{v} e^{4 i t}=\left(\left[\begin{array}{l}
5 \\
2
\end{array}\right]+i\left[\begin{array}{c}
0 \\
-4
\end{array}\right]\right)(\cos 4 t+i \sin 4 t)=\boldsymbol{x}_{1}(t)+i \boldsymbol{x}_{2}(t),
$$

where

$$
\boldsymbol{x}_{1}(t)=\left[\begin{array}{l}
5 \\
2
\end{array}\right] \cos 4 t-\left[\begin{array}{c}
0 \\
-4
\end{array}\right] \sin 4 t, \quad \boldsymbol{x}_{2}(t)=\left[\begin{array}{l}
5 \\
2
\end{array}\right] \sin 4 t+\left[\begin{array}{c}
0 \\
-4
\end{array}\right] \cos 4 t,
$$

and the general solution to the equation is

$$
\boldsymbol{x}(t)=c_{1} \boldsymbol{x}_{1}(t)+c_{2} \boldsymbol{x}_{2}(t) .
$$

For the particular solution, the initial condition gives

$$
\left[\begin{array}{l}
5 \\
6
\end{array}\right]=c_{1}\left[\begin{array}{l}
5 \\
2
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
-4
\end{array}\right],
$$

whose solution is $c_{1}=1, c_{2}=-1$, and hence,

$$
\boldsymbol{x}(t)=\left[\begin{array}{l}
5 \cos 4 t-5 \sin 4 t \\
6 \cos 4 t+2 \sin 4 t
\end{array}\right]
$$

Problem 3 Matrix exponential

3a

Express the solution $\boldsymbol{x}(t), t \geq 0$, to the initial value problem

$$
\boldsymbol{x}^{\prime}(t)=A \boldsymbol{x}(t)+\boldsymbol{f}(t), \quad \boldsymbol{x}(0)=\boldsymbol{x}_{0}
$$

in terms of the matrix exponential $e^{t A}$, where $\boldsymbol{x}(t), \boldsymbol{f}(t)$, and \boldsymbol{x}_{0} are vectors in \mathbb{R}^{n}, and A is a matrix in $\mathbb{R}^{n \times n}$.

Answer:

$$
\boldsymbol{x}(t)=e^{t A} \boldsymbol{x}_{0}+\int_{0}^{t} e^{(t-s) A} \boldsymbol{f}(s) d s
$$

3b

Find $e^{t A}$ in the case that A is the matrix in Problem 2.
Answer: We use the fact that

$$
e^{t A}=\Phi(t) \Phi(0)^{-1}
$$

where $\Phi(t)$ is the fundamental matrix solution

$$
\Phi(t)=\left[\begin{array}{ll}
\boldsymbol{x}_{1}(t) & \boldsymbol{x}_{2}(t)
\end{array}\right],
$$

which is

$$
\Phi(t)=\left[\begin{array}{cc}
5 \cos 4 t & 5 \sin 4 t \\
2 \cos 4 t+4 \sin 4 t & 2 \sin 4 t-4 \cos 4 t
\end{array}\right]
$$

Since

$$
\Phi(0)=\left[\begin{array}{cc}
5 & 0 \\
2 & -4
\end{array}\right], \quad \Phi(0)^{-1}=-\frac{1}{20}\left[\begin{array}{cc}
-4 & 0 \\
-2 & 5
\end{array}\right]
$$

we find

$$
e^{t A}=-\frac{1}{4}\left[\begin{array}{cc}
-4 \cos 4 t-2 \sin 4 t & 5 \sin 4 t \\
-4 \sin 4 t & 2 \sin 4 t-4 \cos 4 t
\end{array}\right]
$$

(Continued on page 4.)

Problem 4 Optimal control

Consider the problem

$$
\begin{gathered}
\max \int_{0}^{1}(1-u(t)) x(t) d t, \quad \dot{x}(t)=2 u(t) x(t), \\
x(0)=3, \quad x(1) \text { free, }
\end{gathered}
$$

with $u(t) \in U:=[0,1], t \in[0,1]$.

4 a

If (x, u) is any admissible pair for this problem, explain why $x(t)>0$ for all $t \in[0,1]$.
Answer: If not, since x is continuous, there is some t_{*} in $(0,1]$ such that $x\left(t_{*}\right)=0$. Since $x(0)>0$ we can further suppose that t_{*} is the smallest such t_{*}. Then by the differential equation and the control restriction $u \in U$, $\dot{x}(t) \geq 0$ for $t \in\left[0, t_{*}\right]$ and so $x\left(t_{*}\right) \geq x(0)=3$, which is a contradiction.

4b

If the pair $\left(x^{*}(t), u^{*}(t)\right)$ solves the problem, use the maximum principle to show that

$$
u^{*}(t)= \begin{cases}1, & t<1 / 2 \\ 0, & t>1 / 2\end{cases}
$$

Answer: The Hamiltonian is

$$
H=(1-u) x+2 p u x=x(1+(2 p-1) u),
$$

with $p(t)$ the adjoint function. Therefore, due to the control restriction U and the fact that $x \geq 0$, if $p(t)>1 / 2, H$ is maximized by $u=u^{*}=1$, and if $p(t)<1 / 2, H$ is maximimized by $u=u^{*}=0$.

Since

$$
\dot{p}=-\frac{\partial H^{*}}{\partial x}=-\left(1+(2 p-1) u^{*}\right),
$$

we see that if $p(t)>1 / 2$,

$$
\dot{p}(t)= \begin{cases}-2 p(t), & p(t)>1 / 2 \tag{1}\\ -1, & p(t) \leq 1 / 2\end{cases}
$$

Thus p is monotonically decreasing in $[0,1]$. Since $x(1)$ is free, the transversality condition for p is $p(1)=0$. This shows that there is some $t_{*} \in[0,1)$ such that $p(t)<1 / 2$ for $t>t_{*}$. We can solve for p in the subinterval $\left[t_{*}, 1\right]$. Since $\dot{p}(t)=-1$ and $p(1)=0$, we have $p(t)=1-t$ in this subinterval, and since $p\left(t_{*}\right)=1 / 2$, we find that $t_{*}=1 / 2$.
(Continued on page 5.)

4c

Find x^{*}.
Answer: Since $u^{*}(t)=1$ for $t<1 / 2$, solving the equation $\dot{x}=2 u x=2 x$ in the subinterval $[0,1 / 2]$ with the initial condition $x(0)=3$ gives $x(t)=3 e^{2 t}$. For x in the subinterval $[1 / 2,1]$, we have the equation $\dot{x}=2 u x=0$ and the initial condition $x(1 / 2)=3 e$ from the first subinterval, which gives $x(t)=3 e$ for $t \in[1 / 2,1]$.

4d

Show that the candidate $\left(x^{*}, u^{*}\right)$ for optimality is indeed optimal.
Answer: If H is concave in x and u we can use the Mangasarian sufficiency theorem to show that $\left(x^{*}, u^{*}\right)$ is optimal. However, since H contains the product term $x u$, it is not concave. However, we can try the weaker condition that

$$
\hat{H}(x, p(t), t):=\max _{u \in U} H(x, u, p(t), t)
$$

is concave in x (the Arrow sufficiency theorem). Since

$$
\hat{H}(x, p(t), t)= \begin{cases}-2 p(t) x, & t<1 / 2 \tag{2}\\ -x, & t \geq 1 / 2\end{cases}
$$

it is concave in x for all $t \in[0,1]$, and so Arrow's theorem applies.

Problem 5 Dynamical systems

Consider the non-linear system

$$
\frac{d x}{d t}=x y-2, \quad \frac{d y}{d t}=x-2 y .
$$

Find the critical points, their types, and stabilities.
Answer: The solutions to

$$
x y-2=x-2 y=0,
$$

are $(x, y)=(2,1)$ and $(x, y)=(-2,-1)$. The Jabobian of $(f, g), f(x, y)=$ $x y-2, g(x, y)=x-2 y$, is

$$
J(x, y)=\left[\begin{array}{cc}
y & x \\
1 & -2
\end{array}\right] .
$$

Let

$$
J=J(2,1)=\left[\begin{array}{cc}
1 & 2 \\
1 & -2
\end{array}\right] .
$$

Then

$$
|J-\lambda I|=(1-\lambda)(-2-\lambda)-2=\lambda^{2}+\lambda-4,
$$

(Continued on page 6.)
and so $\lambda=(-1 \pm \sqrt{17}) / 2$. Since the eigenvalues are real, with one negative, one positive, $(2,1)$ is a saddle point, which is unstable.

Let

$$
J=J(-2,-1)=\left[\begin{array}{cc}
-1 & -2 \\
1 & -2
\end{array}\right]
$$

Then

$$
|J-\lambda I|=(-1-\lambda)(-2-\lambda)+2=\lambda^{2}+3 \lambda+4,
$$

and so $\lambda=(-3 \pm \sqrt{7} i) / 2$. Since the eigenvalues are a conjugate pair, with negative real part, $(-2,-1)$ is a sprial sink, which is asympotically stable.

Good luck!

