UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in MAT?2440 — Differential equations and
optimal control theory

Day of examination: 11 June 2015
Examination hours:  0900-1300
This problem set consists of 6 pages.
Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

All 10 part questions will be weighted equally.

Problem 1 First order equations

la

Solve the initial value problem

Yy — 2wy = 42°e”, y(0) = 0.

Answer:
Y + P(x)y = Q(),

where ,
P(r) = =22, Q(x)=4x’e".

The integrating factor is

.2
edexzea:'

Multiplying the equation by this gives

(e—x y)/ — 4[E3,

and so
2
ety = x4 C,

and
y=e" (z' + O).

The initial condition implies C' = 0, and so

(Continued on page 2.)
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1b

Solve the equation
2zyy = x® + 2y

by making the substitution v = y/x, or otherwise.

Answer:
2y = (z/y) + 2(y/).
Let v = y/x. Then y = zv and ¢y = zv' + v, and so

2(xv +v) = 1/v + 20,

and so
220" = 1/v,
and so p
2udv = —x,
z
and so
v? =Inz + C,
and so

y* = 2*(Inz + O).
Problem 2 Linear systems

Using the eigenvalue method, find the particular solution to the linear system
x'(t) = Ax(t), with (0) = xo, where

a=li D) =i

A=A =(2—-X)(=2—)) +20 =)+ 16,

Answer:

and so A = +44. It is sufficient to use A = 4i. To obtain an eigenvector we
solve

(A—4il)v =0,

2 —4i -5 a
a= 3" L2 fi] -0
and both equations are the same, and we can solve the first one by setting

a=5and b =2 — 4i, and then the eigenvector is v = [5,2 — 4i]”. Then a
(complex) solution to the equation is

ie.,

2(t) = veit — (B} +i {_0 4D (cosdt + isindt) = @1 (£) + izs (L),

(Continued on page 3.)
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where

5 01 . 5| . 0
x(t) = {21 cos 4t — [_4} sin 4¢, To(t) = {2] sin 4t + [_4} cos 4t,
and the general solution to the equation is
:c(t) = cla:l(t) + CQwQ(t).

For the particular solution, the initial condition gives

o =+ (2]

whose solution is ¢; = 1, ¢ = —1, and hence,

2(t) = 5cosdt — Hsindt
|6 cos 4t + 2sin 4t.

Problem 3 Matrix exponential

3a
Express the solution x(t), t > 0, to the initial value problem
z'(t) = Az(t) + f(t),  x(0) =z,

in terms of the matrix exponential !4, where x(t), f(t), and x, are vectors
in R", and A is a matrix in R™*".

Answer:

t
x(t) = e ay + / e =DAf(s) ds.
0

3b

Find e in the case that A is the matrix in Problem 2.
Answer: We use the fact that

et = o(t)d(0)7,
where ®(t) is the fundamental matrix solution

o(t) = [ml(t) 932@)} )

which is
B(t) = 5 cos 4t 5 sin 4t,
N 2cos4t +-4sindt 2sin4t —4cosdt|’
Since ) |
15 0 4 —4 0
®(0) = 2 —4} ’ ®O) = 20 {—2 5]’
we find
14 _ L |—4dcosdl —2sindt 5sin 4t
€ = 4 —4sin4t 2sin4t — 4 cosdt|”

(Continued on page 4.)
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Problem 4 Optimal control

Consider the problem

max/o (1 —wu(t))x(t) dt, x(t) = 2u(t)x(t),

z(0) = 3, z(1) free,
with u(t) € U :=[0,1], t € [0, 1].

4a
If (x,u) is any admissible pair for this problem, explain why z(¢) > 0 for all
t €10,1].

Answer: If not, since z is continuous, there is some ¢, in (0, 1] such that
x(t.) = 0. Since x(0) > 0 we can further suppose that ¢, is the smallest
such t,. Then by the differential equation and the control restriction v € U,
x(t) > 0 for t € [0,t,] and so z(t.) > x(0) = 3, which is a contradiction.

4b

If the pair (z*(¢),u*(t)) solves the problem, use the maximum principle to

show that
1, t<1/2;
u () =1 /%
0, t>1/2.

Answer: The Hamiltonian is
H=(1—-uz+2puxr=2x(1+ (2p — 1u),

with p(t) the adjoint function. Therefore, due to the control restriction U
and the fact that = > 0, if p(t) > 1/2, H is maximized by u = v* = 1, and if
p(t) < 1/2, H is maximimized by u = u* = 0.

Since
. OH~
P= ox

= —(1+(2p - Du"),

we see that if p(t) > 1/2,

: —2p(t), p(t)>1/2;
p(t) = (1)
-1, p(t) < 1/2.
Thus p is monotonically decreasing in [0,1]. Since x(1) is free, the

transversality condition for p is p(1) = 0. This shows that there is some
t. € [0,1) such that p(t) < 1/2 for t > t.. We can solve for p in the
subinterval [t,, 1]. Since p(t) = —1 and p(1) = 0, we have p(t) = 1 — ¢ in this
subinterval, and since p(t.) = 1/2, we find that ¢, = 1/2.

(Continued on page 5.)
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4c

Find z*.

Answer: Since u*(t) = 1 for t < 1/2, solving the equation & = 2uzx = 2x in
the subinterval [0, 1/2] with the initial condition x(0) = 3 gives z(t) = 3e?.
For z in the subinterval [1/2, 1], we have the equation & = 2ux = 0 and the

initial condition x(1/2) = 3e from the first subinterval, which gives z(t) = 3e
for t € [1/2, 1.

4d
Show that the candidate (z*,u*) for optimality is indeed optimal.

Answer: If H is concave in x and u we can use the Mangasarian sufficiency
theorem to show that (x*,u*) is optimal. However, since H contains the
product term zu, it is not concave. However, we can try the weaker condition
that

A

H(x,p(t),t) = max H(x,u,p(t),t)

is concave in x (the Arrow sufficiency theorem). Since

X {—Qp(t):c, t<1/2;

H(z,p(t),t) = . t>1/2

it is concave in x for all ¢ € [0, 1], and so Arrow’s theorem applies.

Problem 5 Dynamical systems

Consider the non-linear system

d d
d—i:xy—Q, —y:a:—2y.

Find the critical points, their types, and stabilities.

Answer: The solutions to

vy —2=x—2y =0,
are (z,y) = (2,1) and (z,y) = (-2, —1). The Jabobian of (f,g), f(z,y) =
ry —2, g(z,y) =z — 2y, is

J(z,y) = ﬁ/ _332] .

Let

J=J21) = E _22} .

Then
J=XM|=(1-=MN(=2-X)—2=XA+)\—4,

(Continued on page 6.)
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and so A = (=1 4++/17)/2. Since the eigenvalues are real, with one negative,
one positive, (2,1) is a saddle point, which is unstable.
Let

J=J(=2,-1) = [_11 :;] :

Then

|J = M| =(=1=XA)(=2—X)+2= )\ +3)\+4,
and so A = (=3 4 /7i)/2. Since the eigenvalues are a conjugate pair, with
negative real part, (—2,—1) is a sprial sink, which is asympotically stable.

Good luck!



