
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Examination in MAT 2440 — Differential equations and
Optimal Control Theory

Day of examination: Friday June 8, 2016

Examination hours: 09:00 – 13:00

This problem set consists of 7 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

SOLUTIONS:

Problem 1 (Weight 15 %)

Show that the differential equation

(1)
dy
dx

=
x

4y3 − y

yields an exact differential form. Solve the equation (1) implicitly. Show that
the solutions are given by the equation

(2) x2 + y2 − 2y4 = C,

where C is a constant.

Solution:
(1) can be written as

(∗) x dx+ (y − 4y3) dy = 0

We let P (x, y) = x, Q(x, y) = y − 4y3. Then

∂P

∂y
= 0 =

∂Q

∂x
.

Hence (∗) is exact. Consequently, there is a "potential" function φ such that

∂φ

∂x
= P,

∂φ

∂y
= Q.

Integrating the first of the identities with respect to x yields

φ(x, y) =
1

2
x2 + A(y)

(Continued on page 2.)
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Then ∂φ
∂y

= A′(y) = y − 4y3. Hence A(y) = 1
2
y2 − y4 + k. One such φ is

φ(x, y) = 1
2
x2 + 1

2
y2 − y4. Therefore, the solutions of (1) are given by

x2 + y2 − 2y4 = C.

Problem 2 (Weight 45 %)

We will study the autonomous system of differential equations:

(3)

{
ẋ = 4y3 − y
ẏ = x

(a) Find the critical points of the system.
Linearize (3) at the points (0, 1

2
) and (0, 0). Explain that the system is

almost linear at both points.

(b) Solve the linear system that you obtained at (0, 0).

(c) Determine the type of the point (0, 1
2
) with regard to the the nonlinear

system (3). What can you say at present about the type of (0, 0)? Show that
(0, 0) is no sink.

(d) Justify that (0, 0) is a center for the system (3).
Hint: Try polar coordinates.

Solution:
(a) : The critical points (also called equilibriums) are given by 4y3 − y = 0
and x = 0, equivalently: x = 0 and (y = 0 or 4y2 = 1). Hence they are
exactly

(0, 0), (0,
1

2
), (0,−1

2
).

We linearize (3) at
(i) (0, 1

2
): Let f(x, y) = 4y3 − y, g(x, y) = x. Then the Jacobian matrix is[

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]
=

[
0 12y2 − 1
1 0

]
, hence A = J(0,

1

2
) =

[
0 2
1 0

]
We translate the critical point to the origin by u = x, v = y − 1

2
. Then the

linearized system is[
u̇
v̇

]
= A

[
u
v

]
=

[
2v
u

]
, or u̇ = 2v, v̇ = u.

(ii) (0, 0): f and g being polynomial functions, we see directly from (3) that

(∗) ẋ = −y, ẏ = x

is the linearized system.
We notice that the polynomial functions f and g are continuously

(Continued on page 3.)
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differentiable. Hence, if we change coordinates so that that the critical point
is at the origin in the new (u, v)-system, we know from the course that the first
order remainder term of Taylor’s formula tends to zero faster than

√
u2 + v2.

Moreover, the Jacobian matrices J(0, 1
2
) and J(0, 0) are nonsingular. Since

there are only finitely many critical points, they are all isolated. We conclude
that the system (3) is almost linear at (0, 1

2
) and (0, 0).

(b) : From (ii) [
ẋ
ẏ

]
=

[
0 −1
1 0

] [
x
y

]
where the eigenvalues of [

0 −1
1 0

]
are ±i. Eigenvectors

[
a
b

]
corresponding to the eigenvalue −i are given by

[
0 −1
1 0

] [
a
b

]
= −i

[
a
b

]
,

or ia = b. Thus a complex eigenvector is
[
1
i

]
=

[
1
0

]
+ i

[
0
1

]
and a complex

solution of the system (∗) is

e−it
[
1
i

]
= (cos t− i sin t)(

[
1
0

]
+ i

[
0
1

]
).

This yields two real, linearly independent solutions that generate the general
solution [

x(t)
y(t)

]
= c1

[
cos t
sin t

]
+ c2

[
− sin t
cos t

]
(t ∈ R)

Alternative:
This can also be seen using elimination:

ẋ = −y, ẏ = x⇒ ẍ = −ẏ = −x⇒
ẍ+ x = 0⇒
x(t) = c1 cos t+ c2 sin t,

y(t) = −ẋ(t) = c1 sin t− c2 cos t

(c) : The matrix J(0, 1
2
) =

[
0 2
1 0

]
of the system at (0, 1

2
) has eigenvalues

λ such that: 0 =

∣∣∣∣ λ −2
−1 λ

∣∣∣∣ = λ2 − 2, so that λ = ±
√
2. They are real

of opposite signs. Hence the point (0, 1
2
) is a saddle point both for the

linear and the nonlinear system. Saddle points are unstable. The solution
curves (trajectories) of (3) "look like" hyperbolas close to the critical point.

The matrix J(0, 0) =
[
0 −1
1 0

]
of the system at (0, 0) has purely imaginary

(Continued on page 4.)



Examination in MAT 2440, Friday June 8, 2016 Page 4

eigenvalues ±i. Hence (0, 0) is either a center or a spiral point for the
nonlinear system. It can be stable, unstable or asymptotically stable.

Suppose (x(t), y(t)) is a solution curve starting at a point (x0, y0) 6= (0, 0)
close to the critical point (0, 0) and such that

||(x(t), y(t))− (0, 0)|| → 0 as t→∞.

Since (x0, y0) 6= (0, 0), the constant C of equation (2) x2 + y2 − 2y4 = C in
Problem 1 must be nonzero (if x2 + y2 is small, say less than 1/

√
2, then

x2+ y2− 2y4 > 0, so C > 0). We have x(t)2+ y(t)2 −→
t→∞

0, hence x(t)2, y(t)2,
and y(t)4 all tend to 0 as t → ∞. However, this implies the left side of (2)
approaches zero, contradicting that the constant C is nonzero. We conclude
that (0, 0) is no sink.
(d) : We use polar coordinates in the implicit solution formula (2):

x = r cos θ, y = r sin θ where r = r(t), and θ = θ(t) may depend on t.

Using (2) we then find

(∗) 2r4 sin4 θ − r2 + C = 0

We notice that for points sufficiently close to (0, 0), we have C > 0 since y4
becomes "much" smaller than x2 + y2 as (x, y) → (0, 0). In fact, it suffices
that x2 + y2 < 1

2
, that is, r < 1√

2
. We solve (∗) for r2:

r2 =

{
1

4 sin4 θ
[1−

√
1− 8C sin4 θ], if sin θ = 0,

C, if sin θ = 0.

We must use the minus sign in front of the square root, as a plus sign yields
r2 →∞ as θ → 0, contradicting (∗). On the other hand, the minus sign yields
a ”0

0
” expression that is seen to approach C as sin θ → 0, by l’Hôpital’s rule,

in agreement with (∗). Thus each sin2 θ yields a unique r2, hence a unique r
(since r ≥ 0). Acordingly, sin2 θ being a periodic function of θ, we see from
(∗) that solution curves starting sufficiently close to (0, 0) (say, for which
r < 1√

2
) are periodic functions of θ. Hence they are closed. This implies that

(0, 0) is a center. (Since sin4(−θ) = sin4 θ and sin(π − θ) = sin θ we also see
that the curves are symmetric about both coordinate axis in the xy-system.)

(Continued on page 5.)
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Phase plane portrait with a few trajectories of system (3):
(A sketch of solution curves was not required.)

Problem 3 (Weight 40 %)

Assume that (x∗, u∗) is an optimal pair of the control problem:

max
∫ 2

0

[x(t) + 2u(t)]e−t dt, ẋ = 2x− 1

2
u, x(0) = 0, x(2) is free,

u(t) ∈ [0, 1] for all t ∈ [0, 2].

(a) : Show that the adjoint function of the problem (as given in the
Maximum Principle) is

p(t) = e2−2t − e−t, for all t in [0, 2].

(b) Explain that u∗(t) = 1 or u∗(t) = 0 for all t in [0, 2]. Find (x∗, u∗).
Decide if this really is an optimal pair.

(c) Find an optimal pair of the following normal control problem, if an
optimal pair exists:

max
∫ 2

0

[x(t) + 2u(t)]e−t dt, ẋ = 2x− 1

2
u, x(0) = 0, x(2) ≥ e4 +

1

4
,

u(t) ∈ [0, 1] for all t ∈ [0, 2].

Hint: Verify that ẋ ≤ 2x.

Solution:
(a) : The Hamiltonian of the problem is

H(t, x, u, p) = (x+ 2u)e−t + p(2x− 1

2
u)

By the Maximum Principle there is an "adjoint function" p that is continuous,
piecewise C1, and is given by the differential equation

∂H

∂x
(t, x∗(t), u∗(t), p(t)) = −ṗ(t),

(Continued on page 6.)
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except at the discontinuities of u∗. The above yields e−t+2p = −ṗ, or ṗ+2p =
−e−t, d

dt(pe
2t) = −et, which has the general solution p(t) = ae−2t−e−t. Here

p(t) = 0 since x(2) is free. Hence

p(t) = e2−2t − e−t.

(b) :
By the Maximum Principle again, u = u∗(t) must maximize the function ht,
where

ht(u) = H(t, x∗(t), u, p(t)) = x∗(t)(e−t + 2p(t)) + u(2e−t − 1

2
p(t))

for each t ∈ [0, 2]. Here H is linear in u (even in (x, u)), so the maximum
must be attained at an endpoint u = 0 or u = 1. Consequently, u∗(t) = 0 or
u∗(t) = 1. We have

u∗(t) =


0, if 2e−t − 1

2
p(t) < 0, i.e. p(t) > 4e−t,

1, if p(t) < 4e−t,

any value in [0, 1], if p(t) = 4e−t,

we let u∗(t) = 0 in this case.

Since p(t) = e2−2t − e−t, we find

p(t) < 4e−t ⇔ e2−2t − e−t < 4e−t

⇔ e2−2t < 5e−t ⇔ e2−t < 5⇔ 2− t < ln 5

⇔ t > 2− ln 5 (where 2− ln 5 ∈ (0, 2)).

Hence

u∗(t) =

{
0, if 0 ≤ t ≤ 2− ln 5

1, if 2− ln 5 < t ≤ 2

Notice that x = x∗, u∗ satisfy ẋ = 2x− 1
2
u. There are two cases to consider:

(i)u = 0 (t ∈ [0, 2− ln 5]) yields
ẋ = 2x, x(t) = ce2t. Since x(0) = 0, we find

x∗(t) = x(t) = 0 (t ∈ [0, 2− ln 5]).

(ii)u = 1 (t ∈ [2− ln 5, 2]) implies
ẋ− 2x = −1

2
, x(t) = Ke2t + 1

4
. Since x = x∗ is continuous, we find

0 = x(2− ln 5) = Ke2(2−ln 5) +
1

4

= Ke4
1

25
+

1

4
,

K = (−1

4
)e−425 = −25

4
e−4,

x∗(t) = x(t) = −25

4
e−4+2t +

1

4

(Continued on page 7.)
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Since H(t, x, u, p(t)) is a linear function of (x, u) for each fixed t ∈ [0, 2], it is
certainly concave (and convex). By Mangasarian’s Theorem the pair (x∗, u∗)
is optimal.
(c) :
Since this is the same problem as above, but with the new terminal condition
x(2) ≥ e4 + 1

4
, we obtain the same Hamiltonian and the same solution for p

(up to a constant): p(t) = ae−2t − e−t. Again

u∗(t) =


0, if 2e−t − 1

2
p(t) < 0, i.e. p(t) > 4e−t,

1, if p(t) < 4e−t,

any value in [0, 1], if p(t) = 4e−t,we let u∗(t) = 0 in this case,

hence there are two cases for x = x∗. Pursuing this, we may eventually (after
some work) obtain a contradiction. However, there is an easier solution, as
indicated by the Hint:
The equation of state, ẋ = 2x− 1

2
u, where u ∈ [0, 1], yields that

(i) ẋ ≤ 2x.

Since x(0) = 0, this implies that x never can become positive, x(t) ≤ 0 for
all t ∈ [0, 2]. The following argument proves this:
We multply the inequality ẋ(t)− 2x(t) ≤ 0 by e−2t. Then

d
dt
(x(t)e−2t) = e−2t(ẋ(t)− 2x(t)) ≤ 0.

Thus the function x(t)e−2t is decreasing. Since x(0) = 0, x(t)e−2t = 0 at
t = 0. It follows that x(t)e−2t ≤ 0, and hence x(t) ≤ 0, for all t ≥ 0.
Alternative: On intervals I where x(t) > 0, (i) yields

d
dt

lnx(t) =
ẋ(t)

x(t)
≤ 2, hence lnx(t) ≤ 2t+ k.

Therefore, 0 < x(t) ≤ Ke2t (t ∈ I), where K can be any positive constant.
Letting K → 0, we get a contradiction.

Hence we have shown x(t) ≤ 0 for all t. However, this clearly contradicts
the terminal condition x(2) ≥ e4 + 1

4
. Accordingly, the problem has no

solution.

THE END


