UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in MAT 2440 - Differential equations and Optimal Control Theory
Day of examination: Friday June 8, 2016
Examination hours: 09:00-13:00
This problem set consists of 7 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

SOLUTIONS:

Problem 1 (Weight 15%)

Show that the differential equation

$$
\text { (1) } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{4 y^{3}-y}
$$

yields an exact differential form. Solve the equation (1) implicitly. Show that the solutions are given by the equation

$$
\text { (2) } x^{2}+y^{2}-2 y^{4}=C,
$$

where C is a constant.

Solution:

(1) can be written as

$$
(*) \quad x \mathrm{~d} x+\left(y-4 y^{3}\right) \mathrm{d} y=0
$$

We let $P(x, y)=x, Q(x, y)=y-4 y^{3}$. Then

$$
\frac{\partial P}{\partial y}=0=\frac{\partial Q}{\partial x}
$$

Hence $(*)$ is exact. Consequently, there is a "potential" function ϕ such that

$$
\frac{\partial \phi}{\partial x}=P, \frac{\partial \phi}{\partial y}=Q
$$

Integrating the first of the identities with respect to x yields

$$
\phi(x, y)=\frac{1}{2} x^{2}+A(y)
$$

(Continued on page 2.)

Then $\frac{\partial \phi}{\partial y}=A^{\prime}(y)=y-4 y^{3}$. Hence $A(y)=\frac{1}{2} y^{2}-y^{4}+k$. One such ϕ is $\phi(x, y)=\frac{1}{2} x^{2}+\frac{1}{2} y^{2}-y^{4}$. Therefore, the solutions of (1) are given by

$$
x^{2}+y^{2}-2 y^{4}=C .
$$

Problem 2 (Weight 45%)

We will study the autonomous system of differential equations:

$$
\left\{\begin{array}{l}
\dot{x}=4 y^{3}-y \tag{3}\\
\dot{y}=x
\end{array}\right.
$$

(a) Find the critical points of the system.

Linearize (3) at the points $\left(0, \frac{1}{2}\right)$ and $(0,0)$. Explain that the system is almost linear at both points.
(b) Solve the linear system that you obtained at $(0,0)$.
(c) Determine the type of the point $\left(0, \frac{1}{2}\right)$ with regard to the the nonlinear system (3). What can you say at present about the type of $(0,0)$? Show that $(0,0)$ is no sink.
(d) Justify that $(0,0)$ is a center for the system (3).

Hint: Try polar coordinates.

Solution:

(a) : The critical points (also called equilibriums) are given by $4 y^{3}-y=0$ and $x=0$, equivalently: $x=0$ and ($y=0$ or $4 y^{2}=1$). Hence they are exactly

$$
(0,0),\left(0, \frac{1}{2}\right),\left(0,-\frac{1}{2}\right)
$$

We linearize (3) at
(i) $\left(0, \frac{1}{2}\right)$: Let $f(x, y)=4 y^{3}-y, g(x, y)=x$. Then the Jacobian matrix is

$$
\left[\begin{array}{cc}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
0 & 12 y^{2}-1 \\
1 & 0
\end{array}\right] \text {, hence } A=J\left(0, \frac{1}{2}\right)=\left[\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right]
$$

We translate the critical point to the origin by $u=x, v=y-\frac{1}{2}$. Then the linearized system is

$$
\left[\begin{array}{l}
\dot{u} \\
\dot{v}
\end{array}\right]=A\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{c}
2 v \\
u
\end{array}\right] \text {, or } \dot{u}=2 v, \dot{v}=u .
$$

(ii) (0,0): f and g being polynomial functions, we see directly from (3) that

$$
(*) \quad \dot{x}=-y, \dot{y}=x
$$

is the linearized system.
We notice that the polynomial functions f and g are continuously
(Continued on page 3.)
differentiable. Hence, if we change coordinates so that that the critical point is at the origin in the new (u, v)-system, we know from the course that the first order remainder term of Taylor's formula tends to zero faster than $\sqrt{u^{2}+v^{2}}$. Moreover, the Jacobian matrices $J\left(0, \frac{1}{2}\right)$ and $J(0,0)$ are nonsingular. Since there are only finitely many critical points, they are all isolated. We conclude that the system (3) is almost linear at $\left(0, \frac{1}{2}\right)$ and $(0,0)$.
(b) : From (ii)

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

where the eigenvalues of

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

are $\pm i$. Eigenvectors $\left[\begin{array}{l}a \\ b\end{array}\right]$ corresponding to the eigenvalue $-i$ are given by

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
a \\
b
\end{array}\right]=-i\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

or $i a=b$. Thus a complex eigenvector is $\left[\begin{array}{l}1 \\ i\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]+i\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and a complex solution of the system (*) is

$$
e^{-i t}\left[\begin{array}{l}
1 \\
i
\end{array}\right]=(\cos t-i \sin t)\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]+i\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) .
$$

This yields two real, linearly independent solutions that generate the general solution

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\cos t \\
\sin t
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\sin t \\
\cos t
\end{array}\right] \quad(t \in \mathbb{R})
$$

Alternative:

This can also be seen using elimination:

$$
\begin{aligned}
& \dot{x}=-y, \dot{y}=x \Rightarrow \ddot{x}=-\dot{y}=-x \Rightarrow \\
& \ddot{x}+x=0 \Rightarrow \\
& x(t)=c_{1} \cos t+c_{2} \sin t \\
& y(t)=-\dot{x}(t)=c_{1} \sin t-c_{2} \cos t
\end{aligned}
$$

(c) : The matrix $J\left(0, \frac{1}{2}\right)=\left[\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right]$ of the system at $\left(0, \frac{1}{2}\right)$ has eigenvalues λ such that: $0=\left|\begin{array}{cc}\lambda & -2 \\ -1 & \lambda\end{array}\right|=\lambda^{2}-2$, so that $\lambda= \pm \sqrt{2}$. They are real of opposite signs. Hence the point $\left(0, \frac{1}{2}\right)$ is a saddle point both for the linear and the nonlinear system. Saddle points are unstable. The solution curves (trajectories) of (3) "look like" hyperbolas close to the critical point. The matrix $J(0,0)=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ of the system at $(0,0)$ has purely imaginary
eigenvalues $\pm i$. Hence $(0,0)$ is either a center or a spiral point for the nonlinear system. It can be stable, unstable or asymptotically stable.

Suppose $(x(t), y(t))$ is a solution curve starting at a point $\left(x_{0}, y_{0}\right) \neq(0,0)$ close to the critical point $(0,0)$ and such that

$$
\|(x(t), y(t))-(0,0)\| \rightarrow 0 \text { as } t \rightarrow \infty .
$$

Since $\left(x_{0}, y_{0}\right) \neq(0,0)$, the constant C of equation (2) $x^{2}+y^{2}-2 y^{4}=C$ in Problem 1 must be nonzero (if $x^{2}+y^{2}$ is small, say less than $1 / \sqrt{2}$, then $x^{2}+y^{2}-2 y^{4}>0$, so $C>0$). We have $x(t)^{2}+y(t)^{2} \underset{t \rightarrow \infty}{\longrightarrow} 0$, hence $x(t)^{2}, y(t)^{2}$, and $y(t)^{4}$ all tend to 0 as $t \rightarrow \infty$. However, this implies the left side of (2) approaches zero, contradicting that the constant C is nonzero. We conclude that $(0,0)$ is no sink.
(d) : We use polar coordinates in the implicit solution formula (2):
$x=r \cos \theta, y=r \sin \theta$ where $r=r(t)$, and $\theta=\theta(t)$ may depend on t.
Using (2) we then find

$$
\text { (*) } 2 r^{4} \sin ^{4} \theta-r^{2}+C=0
$$

We notice that for points sufficiently close to $(0,0)$, we have $C>0$ since y^{4} becomes "much" smaller than $x^{2}+y^{2}$ as $(x, y) \rightarrow(0,0)$. In fact, it suffices that $x^{2}+y^{2}<\frac{1}{2}$, that is, $r<\frac{1}{\sqrt{2}}$. We solve $(*)$ for r^{2} :

$$
r^{2}= \begin{cases}\frac{1}{4 \sin ^{4} \theta}\left[1-\sqrt{1-8 C \sin ^{4} \theta}\right], & \text { if } \sin \theta=0 \\ C, \quad \text { if } \sin \theta=0\end{cases}
$$

We must use the minus sign in front of the square root, as a plus sign yields $r^{2} \rightarrow \infty$ as $\theta \rightarrow 0$, contradicting $(*)$. On the other hand, the minus sign yields a " ${ }_{0}^{0}$ " expression that is seen to approach C as $\sin \theta \rightarrow 0$, by l'Hôpital's rule, in agreement with $(*)$. Thus each $\sin ^{2} \theta$ yields a unique r^{2}, hence a unique r (since $r \geq 0$). Acordingly, $\sin ^{2} \theta$ being a periodic function of θ, we see from $(*)$ that solution curves starting sufficiently close to $(0,0)$ (say, for which $\left.r<\frac{1}{\sqrt{2}}\right)$ are periodic functions of θ. Hence they are closed. This implies that $(0,0)$ is a center. (Since $\sin ^{4}(-\theta)=\sin ^{4} \theta$ and $\sin (\pi-\theta)=\sin \theta$ we also see that the curves are symmetric about both coordinate axis in the $x y$-system.)

Phase plane portrait with a few trajectories of system (3):
(A sketch of solution curves was not required.)

Problem 3 (Weight 40%)

Assume that $\left(x^{*}, u^{*}\right)$ is an optimal pair of the control problem:

$$
\begin{aligned}
& \max \int_{0}^{2}[x(t)+2 u(t)] e^{-t} \mathrm{~d} t, \quad \dot{x}=2 x-\frac{1}{2} u, x(0)=0, x(2) \text { is free, } \\
& u(t) \in[0,1] \text { for all } t \in[0,2] .
\end{aligned}
$$

(a): Show that the adjoint function of the problem (as given in the Maximum Principle) is

$$
p(t)=e^{2-2 t}-e^{-t}, \quad \text { for all } t \text { in }[0,2] .
$$

(b) Explain that $u^{*}(t)=1$ or $u^{*}(t)=0$ for all t in $[0,2]$. Find $\left(x^{*}, u^{*}\right)$. Decide if this really is an optimal pair.
(c) Find an optimal pair of the following normal control problem, if an optimal pair exists:

$$
\begin{aligned}
& \max \int_{0}^{2}[x(t)+2 u(t)] e^{-t} \mathrm{~d} t, \quad \dot{x}=2 x-\frac{1}{2} u, x(0)=0, x(2) \geq e^{4}+\frac{1}{4}, \\
& u(t) \in[0,1] \text { for all } t \in[0,2] .
\end{aligned}
$$

Hint: Verify that $\dot{x} \leq 2 x$.

Solution:

(a) : The Hamiltonian of the problem is

$$
H(t, x, u, p)=(x+2 u) e^{-t}+p\left(2 x-\frac{1}{2} u\right)
$$

By the Maximum Principle there is an "adjoint function" p that is continuous, piecewise C^{1}, and is given by the differential equation

$$
\frac{\partial H}{\partial x}\left(t, x^{*}(t), u^{*}(t), p(t)\right)=-\dot{p}(t),
$$

(Continued on page 6.)
except at the discontinuities of u^{*}. The above yields $e^{-t}+2 p=-\dot{p}$, or $\dot{p}+2 p=$ $-e^{-t}, \frac{\mathrm{~d}}{\mathrm{~d} t}\left(p e^{2 t}\right)=-e^{t}$, which has the general solution $p(t)=a e^{-2 t}-e^{-t}$. Here $p(t)=0$ since $x(2)$ is free. Hence

$$
p(t)=e^{2-2 t}-e^{-t}
$$

(b) :

By the Maximum Principle again, $u=u^{*}(t)$ must maximize the function h_{t}, where

$$
h_{t}(u)=H\left(t, x^{*}(t), u, p(t)\right)=x^{*}(t)\left(e^{-t}+2 p(t)\right)+u\left(2 e^{-t}-\frac{1}{2} p(t)\right)
$$

for each $t \in[0,2]$. Here H is linear in u (even in (x, u)), so the maximum must be attained at an endpoint $u=0$ or $u=1$. Consequently, $u^{*}(t)=0$ or $u^{*}(t)=1$. We have
$u^{*}(t)= \begin{cases}0, & \text { if } 2 e^{-t}-\frac{1}{2} p(t)<0, \text { i.e. } p(t)>4 e^{-t}, \\ 1, & \text { if } p(t)<4 e^{-t}, \\ \text { any value in }[0,1], & \text { if } p(t)=4 e^{-t}, \\ \text { we let } u^{*}(t)=0 \text { in this case. } & \end{cases}$
Since $p(t)=e^{2-2 t}-e^{-t}$, we find

$$
\begin{aligned}
& p(t)<4 e^{-t} \Leftrightarrow e^{2-2 t}-e^{-t}<4 e^{-t} \\
& \Leftrightarrow e^{2-2 t}<5 e^{-t} \Leftrightarrow e^{2-t}<5 \Leftrightarrow 2-t<\ln 5 \\
& \Leftrightarrow t>2-\ln 5 \quad \text { (where } 2-\ln 5 \in(0,2)) .
\end{aligned}
$$

Hence

$$
u^{*}(t)=\left\{\begin{array}{l}
0, \text { if } 0 \leq t \leq 2-\ln 5 \\
1, \text { if } 2-\ln 5<t \leq 2
\end{array}\right.
$$

Notice that $x=x^{*}, u^{*}$ satisfy $\dot{x}=2 x-\frac{1}{2} u$. There are two cases to consider: (i) $\underline{\mathbf{u}=\mathbf{0}}(t \in[0,2-\ln 5])$ yields $\dot{x}=2 x, \quad x(t)=c e^{2 t}$. Since $x(0)=0$, we find

$$
x^{*}(t)=x(t)=0 \quad(t \in[0,2-\ln 5]) .
$$

(ii) $\underline{\mathbf{u}=\mathbf{1}}(t \in[2-\ln 5,2])$ implies $\dot{x}-2 x=-\frac{1}{2}, \quad x(t)=K e^{2 t}+\frac{1}{4}$. Since $x=x^{*}$ is continuous, we find

$$
\begin{aligned}
0 & =x(2-\ln 5)=K e^{2(2-\ln 5)}+\frac{1}{4} \\
& =K e^{4} \frac{1}{25}+\frac{1}{4}, \\
K & =\left(-\frac{1}{4}\right) e^{-4} 25=-\frac{25}{4} e^{-4}, \\
x^{*}(t) & =x(t)=-\frac{25}{4} e^{-4+2 t}+\frac{1}{4}
\end{aligned}
$$

Since $H(t, x, u, p(t))$ is a linear function of (x, u) for each fixed $t \in[0,2]$, it is certainly concave (and convex). By Mangasarian's Theorem the pair (x^{*}, u^{*}) is optimal.
(c) :

Since this is the same problem as above, but with the new terminal condition $x(2) \geq e^{4}+\frac{1}{4}$, we obtain the same Hamiltonian and the same solution for p (up to a constant): $p(t)=a e^{-2 t}-e^{-t}$. Again

$$
u^{*}(t)= \begin{cases}0, & \text { if } 2 e^{-t}-\frac{1}{2} p(t)<0, \text { i.e. } p(t)>4 e^{-t} \\ 1, & \text { if } p(t)<4 e^{-t}, \\ \text { any value in }[0,1], & \text { if } p(t)=4 e^{-t}, \text { we let } u^{*}(t)=0 \text { in this case }\end{cases}
$$

hence there are two cases for $x=x^{*}$. Pursuing this, we may eventually (after some work) obtain a contradiction. However, there is an easier solution, as indicated by the Hint:
The equation of state, $\dot{x}=2 x-\frac{1}{2} u$, where $u \in[0,1]$, yields that

$$
\text { (i) } \quad \dot{x} \leq 2 x \text {. }
$$

Since $x(0)=0$, this implies that x never can become positive, $x(t) \leq 0$ for all $t \in[0,2]$. The following argument proves this:
We multply the inequality $\dot{x}(t)-2 x(t) \leq 0$ by $e^{-2 t}$. Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(x(t) e^{-2 t}\right)=e^{-2 t}(\dot{x}(t)-2 x(t)) \leq 0
$$

Thus the function $x(t) e^{-2 t}$ is decreasing. Since $x(0)=0, x(t) e^{-2 t}=0$ at $t=0$. It follows that $x(t) e^{-2 t} \leq 0$, and hence $x(t) \leq 0$, for all $t \geq 0$.
Alternative: On intervals I where $x(t)>0,(i)$ yields

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \ln x(t)=\frac{\dot{x}(t)}{x(t)} \leq 2, \text { hence } \ln x(t) \leq 2 t+k .
$$

Therefore, $0<x(t) \leq K e^{2 t}(t \in I)$, where K can be any positive constant. Letting $K \rightarrow 0$, we get a contradiction.

Hence we have shown $x(t) \leq 0$ for all t. However, this clearly contradicts the terminal condition $x(2) \geq e^{4}+\frac{1}{4}$. Accordingly, the problem has no solution.

THE END

