Exercises

Ex. 2 p. 374 (from SSS' book)

We consider the problem

$$
\max \int_{0}^{1}\left(1-x^{2}-u^{2}\right) d t, \quad \dot{x}=u, \quad x(0)=0, \quad, \quad x(1) \geq 1, \quad u \in(-\infty, \infty)
$$

Write down the maximum principle theorem for this problem and find the optimal solution.

Ex. 9 p. 375 (from SSS' book)
We consider the problem

$$
\max \int_{0}^{2}\left(x^{2}-u\right) d t, \quad \dot{x}=u, \quad x(0)=1, \quad x(2) \text { free, } \quad u \in[0,1] .
$$

Write down the maximum principle theorem for this problem. Show that $p(t)$ is strictly decreasing and find the optimal solution.

Exercise (from exam 2009)

We consider the problem

$$
\max \int_{0}^{\frac{\pi}{6}}\left(u(t)-\frac{u(t)^{2}}{\cos (t)}\right) d t
$$

where

$$
\left\{\begin{array}{l}
\dot{x}=-u \\
u(t) \geq 0 \\
x(0)=0 \\
x\left(\frac{\pi}{6}\right)=-\frac{1}{8}
\end{array}\right.
$$

You can take for granted that this is a standard problem.
a) Write down the Hamiltonian function $H(t, x, u, p)$ for this control problem. Apply the maximum principle and show that the adjoint function $p(t)$ must be equal to a constant that we denote k.
b) Find the only possible control function u^{*} for this problem as a function of k and other known functions.
c) Determine the constant k and the optimal pair $\left(x^{*}, u^{*}\right)$. Justify the fact that this pair is indeed optimal.
d) We change the terminal conditions to $x(0)=0$ and $x\left(\frac{\pi}{6}\right) \geq-\frac{1}{8}$. What is the solution of the new control problem?

