Exercises

Ex. 2 p. 374 (from SSS' book)

We consider the problem

$$\max \int_0^1 (1 - x^2 - u^2) dt, \quad \dot{x} = u, \quad x(0) = 0, \quad , \quad x(1) \ge 1, \quad u \in (-\infty, \infty)$$

Write down the maximum principle theorem for this problem and find the optimal solution.

Ex. 9 p. 375 (from SSS' book)

We consider the problem

$$\max \int_0^2 (x^2 - u) \, dt, \quad \dot{x} = u, \quad x(0) = 1, \quad x(2) \text{ free}, \quad u \in [0, 1].$$

Write down the maximum principle theorem for this problem. Show that p(t) is strictly decreasing and find the optimal solution.

Exercise (from exam 2009)

We consider the problem

where

$$\max \int_{0}^{\frac{\pi}{6}} \left(u(t) - \frac{u(t)^{2}}{\cos(t)} \right) dt$$
$$\begin{cases} \dot{x} = -u, \\ u(t) \ge 0, \\ x(0) = 0, \\ x(\frac{\pi}{6}) = -\frac{1}{8}. \end{cases}$$

You can take for granted that this is a standard problem.

a) Write down the Hamiltonian function H(t, x, u, p) for this control problem. Apply the maximum principle and show that the adjoint function p(t) must be equal to a constant that we denote k.

b) Find the only possible control function u^* for this problem as a function of k and other known functions.

c) Determine the constant k and the optimal pair (x^*, u^*) . Justify the fact that this pair is indeed optimal.

d) We change the terminal conditions to x(0) = 0 and $x(\frac{\pi}{6}) \ge -\frac{1}{8}$. What is the solution of the new control problem?