Exercise

We want to solve numerically the ordinary differential equation

$$
y^{\prime}=f(y)
$$

with initial data $y(0)=y_{0}$ on the interval $[0, T]$. As usual we split the interval $[0, T]$ into N subintervals and we denote $h=\frac{T}{N}$ and $t_{k}=k h$.

We consider the following numerical scheme. Given y_{k} (which corresponds to the approximation of y at time t_{k}), we compute

$$
\left\{\begin{array}{l}
m_{k, 1}=f\left(y_{k}\right) \\
m_{k, 2}=f\left(y_{k}+\frac{h}{3} m_{k, 1}\right) \\
m_{k, 3}=f\left(y_{k}+\frac{2 h}{3} m_{k, 2}\right)
\end{array}\right.
$$

and set

$$
y_{k+1}=y_{k}+\frac{h}{4}\left(m_{k, 1}+3 m_{k, 3}\right) .
$$

1) We assume that f and all its derivatives are bounded by some constant M and that the time step h is smaller than 1. Prove that the local error for the first step of this method is of fourth order, that is,

$$
\left|y(h)-y_{1}\right| \leq C(M) h^{4}
$$

for some function $C(M)$ which depends only on M (and not on h).
2) What do you except the order of the total error to be for this method?

