The goal is to plot the solution in the phase-plane of the system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x^{2}-2 x y \\
\frac{d y}{d t}=2 x y-y^{2}
\end{array}\right.
$$

Let $X(t)=\binom{x(t)}{y(t)}$, we denote $\frac{d X}{d t}=F(X)$ where

$$
F(X)=\binom{x^{2}-2 x y}{2 x y-y^{2}} .
$$

a) Find the equilibrium and the vertical and horizontal isoclines.
b) How does the vector field look like on the lines $y=x$ and $y=-x$?
c) We consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T\binom{x}{y}=\binom{y}{x} .
$$

What does this transformation represent geometrically? Show that

$$
F \circ T=-T \circ F .
$$

How can we use this result for plotting the vector field?
d) We consider the linear transformation $\bar{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
\bar{T}\binom{x}{y}=\binom{-y}{-x} .
$$

What does this transformation represent geometrically? Show that

$$
F \circ \bar{T}=\bar{T} \circ F .
$$

How can we use this result for plotting the vector field?
e) Plot the vector field and some solution curves in the phase plan.

