
Obligatory exercise for MAT2440

Spring 2015

Deadline: Wednesday 15 April.

All the problems can be solved without the aid of a computer or calculator.
However you may also use any computer system, like Matlab, Mathematica,
Maple, or the numpy package of Python. Whenever doing so, you should
document the commands you are using and explain in detail how you apply
the results.

Problem 1

Let
P (x, y) = 5x4y − y5, and Q(x, y) = x5 − 5xy4.

Solve the differential equation

Pdx+Qdy = 0

as an exact equation.

Answer: Is the equation exact? Yes, because

∂P

∂y
= 5x4 − 5y4 =

∂Q

∂x
.

Then there is a solution of the form F (x, y) = C, where

F =

∫

P dx+ g(y),
∂F

∂y
= Q.

So
F = x5y − xy5 + g(y),
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and
∂F

∂y
= x5 − 5xy4 + g′(y) = Q = x5 − 5xy4,

and so g′(y) = 0 and g(y) = C2 for some constant C2. Therefore, the solution
has the form

x5y − xy5 + C2 = C,

in other words,
x5y − xy5 = K,

for some constant K.

Problem 2

Let

A =

[

1 −1
1 2

]

.

Find a general solution to the differential equation x′ = Ax using either (a)
the method of elimination (write the equation as a system of linear first-order
equations), or (b) the eigenvalue method.

Answer (a): Write the system as

x′

1 = x1 − x2,

x′

2 = x1 + 2x2.

The first equation implies x2 = x1−x′

1, and differentiating gives x′

2 = x′

1−x′′

1.
Substituing these into the second equation gives

(x′

1 − x′′

1) = x1 + 2(x1 − x′

1),

or
x′′

1 − 3x′

1 + 3x1 = 0.

The charc. equation is
r2 − 3r + 3 = 0,

with roots r = (2± i
√
3)/2. So

x1 = e(3/2)t(c1c+ c2s), (1)

2



where

c = cos

√
3

2
t, s = sin

√
3

2
t. (2)

To find x2,

x′

1 = (3/2)e(3/2)t(c1c+ c2s) + e(3/2)t(−
√
3

2
c1s+ c2

√
3

2
c),

and so

x2 = x1 − x′

1 = e(3/2)t((−c1 −
√
3c2)c+ (

√
3c1 − c2)s)/2. (3)

Answer (b): Eigenvalues:

|A− λI| =
∣

∣

∣

∣

1− λ −1
1 2− λ

∣

∣

∣

∣

= λ2 − 3λ+ 3.

So λ = (3 ± i
√
3)/2. It is sufficient to use λ = (3 + i

√
3)/2. Its eigenvector

v satisfies
(A− λI)v = 0,

i.e.,
[

−1/2− i
√
3/2 −1

1 1/2− i
√
3/2

] [

a
b

]

= 0,

and so we can let v = [2,−1− i
√
3]T . Then

x = veλt =

([

2
−1

]

+

[

0

−
√
3

]

i

)

e(3/2)t(c+ is),

with c and s as in (2). So,

x(t) = x1(t) + ix2(t),

where

x1(t) = e(3/2)t
([

2
−1

]

c−
[

0

−
√
3

]

s

)

,

x2(t) = e(3/2)t
([

2
−1

]

s+

[

0

−
√
3

]

c

)

.

Then the general solution is

x(t) = c1x1(t) + c2x2(t) =

[

x1(t)
x2(t)

]

,

with x1 and x2 the same as (1) and (3) if the constants c1 and c2 are divided
by 2.
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Problem 3

Find a general solution to the differential equation x′ = Ax where

A =









1 −1 1 1
1 3 −3 1
0 0 0 1
0 0 −1 0









.

Answer: Eigenvalues

|A− λI| =

∣

∣

∣

∣

∣

∣

∣

∣

1− λ −1 1 1
1 3− λ −3 1
0 0 −λ 1
0 0 −1 −λ

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1− λ −1
1 3− λ

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1
−1 −λ

∣

∣

∣

∣

by the rule for the determinant of a block matrix. So

|A− λI| =
(

(1− λ)(3− λ) + 1
)

(λ2 + 1) = (λ− 2)2(λ2 + 1).

Consider λ = 2, with multiplicity 2. Eigenvectors?

(A− 2I)v =









−1 −1 1 1
1 1 −3 1
0 0 −2 1
0 0 −1 −2

















a
b
c
d









= 0,

gives c = d = 0 and we can take a = 1, b = −1, so v1 = [1,−1, 0, 0]T . We
need a generalized eigenvector. So we can solve

(A− 2I)v2 =









−1 −1 1 1
1 1 −3 1
0 0 −2 1
0 0 −1 −2

















a
b
c
d









= v1,

which gives a+b = −1, and we can let a = −1, b = 0, and v2 = [−1, 0, 0, 0]T .
(Alternatively, we could find a non-zero v2 such that (A − 2I)2v2 = 0 and
then let v1 = (A− 2I)v2). The two solutions corresponding to λ = 2 are

x1(t) = v1e
2t, x2(t) = (tv1 + v2)e

2t.
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With λ = i, the eigenvector v satisfies









1− i −1 1 1
1 3− i −3 1
0 0 −i 1
0 0 −1 −i

















a
b
c
d









= 0,

which gives c = 1, d = i, and then a = (9 − 13i)/25, b = (21 + 3i)/25.
Multiplying by 25, we can take

v = v3 + iv4,

where

v3 =









9
21
25
0









, v4 =









−13
3
0
25









.

The (complex) solution corresponding to λ = i is then

veit = (v3 + iv4)(cos t+ i sin t) = x3(t) + ix4(t),

where

x3(t) = v3 cos t− v4 sin t, x4(t) = v3 sin t+ v4 cos t,

and the complete, general solution is

x(t) =
4

∑

j=1

cjxj(t).

Problem 4

Let

F (t, x, ẋ) = x2 +
1

2
t(t− 1)ẋ2,

and consider the problem

min

∫ 3

2

F (t, x(t), ẋ(t)) dt, subj. to x(2) = 0, x(3) = log

(

25

27

)

. (4)
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(a) Find the Euler equation (E) for (4).

(b) Show that (E) has a first degree polynomial solution x1.

(c) Use reduction of order (see EP Exercise 2.2.36) to find another solution
x2 of (E) such that x2(t) = v(t)x1(t), t ∈ [2, 3].

(d) What is the general solution to (E)? Find the unique solution x∗ to (E)
that satisfies the endpoint conditions in (4).

(e) Decide whether x∗ minimizes the integral in (4).

Answer 4(a): The Euler equation (E) is

∂F

∂x
− d

dt

(

∂F

∂ẋ

)

= 0,

which in this case is

2x− d

dt
(t(t− 1)ẋ) = 0,

or
t(t− 1)ẍ+ (2t− 1)ẋ− 2x = 0.

Answer 4(b): Putting x1 = a+ bt into (E) gives

(2t− 1)b− 2(a+ bt) = 0

and so b+ 2a = 0. We can let a = −1, b = 2, i.e., x1 = 2t− 1 is one solution
to (E).

Answer 4(c): To find a second solution to (E) by reduction of order, we
write (E) as

ẍ+ p(t)ẋ+ q(t)x = 0,

where

p(t) =
2t− 1

t(t− 1)
, q(t) =

−2

t(t− 1)
.

Then, if x2 = vx1,
x1v̈ + (2ẋ1 + px1)v̇ = 0,

and therefore

(2t− 1)v̈ +

(

4 +
(2t− 1)2

t(t− 1)

)

v̇ = 0.

6



Letting u = v̇,

(2t− 1)u̇+

(

4 +
(2t− 1)2

t(t− 1)

)

u = 0.

This is a first order equation that is separable:

du

u
= −

(

4

2t− 1
+

2t− 1

t(t− 1)

)

dt,

and the two terms on the right can be integrated individually,

ln(u) = −2 ln(2t− 1)− ln(t(t− 1)),

and so

u =
1

t(t− 1)(2t− 1)2
.

We need to integrate this to obtain v. Using partial fractions,

u = −1

t
+

1

t− 1
− 4

(2t− 1)2
,

and so

v = − ln(t) + ln(t− 1) +
2

2t− 1
= ln

(

1− 1

t

)

+
2

2t− 1
.

Thus a second solution is

x2 = vx1 = (2t− 1) ln

(

1− 1

t

)

+ 2.

Answer 4(d): The general solution to (E) is

x(t) = c1x1(t) + c2x2(t).

To find x∗ we find c1 and c2 from the boundary conitions,

x1(2)c1 + x2(2)c2 = 0,

x1(3)c1 + x2(3)c2 = ln(25/27),
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and by Cramer’s rule,

c1 = − ln(25/27)x2(2)/D, c2 = ln(25/27)x1(2)/D,

where
D = x1(2)x2(3)− x1(3)x2(2),

and x1(2) = 3, x1(3) = 5,

x2(2) = 3 ln(1/2) + 2, x2(3) = 5 ln(2/3) + 2.
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