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This note is just a little complement to the book, underlining a few
points, listing some terminology and giving examples and exercises
(the same exercises as already posted on the web). There is also a very
short recap of some technics you should know beforehand.

Terminology

Ordinary differential equations are the only type of differ- ordinære differential ligninger

ential equations we shall meet in this course. They just involve one
independent variable in contrast to partial differential equations where
there are several independent variables. One often thinks about the
variable as time and denote it by t, but of course in many problems it
will be some thing else. The acronym OED is frequently used.

The Euler–Bernoulli beam equation describes how a beam is de-
flected by external forces—like gravity—is an essential tool for engi-
neers, and played a great role when the Eiffel tower was constructed:

d2

dx2 (EI
d2

dx2 w(x)) = q

is one where x is the length measured along the beam.

The configuration space is the space where the sought for func- configuration space=konfigurasjonsrom

tions take their values. It can either be determined by assumption
imposed on the sytem by the “real world”—that is, conditions on
the sought for functions imposed by the application, or they can be
confined to certain regions for mathematical reasons.

Frequently t he configuration space will be a part of the euclidean
space Rn. For instance the Lotka–Volterra equations

ẋ =rx− axy

ẏ =bxy− sy

describing a prey-predator system, has the first quadrant as a config-
uration space, since the number of individuals must be positive. This
is imposed by the biological assumptions; mathematically there is no
reason to prohobit negative solutions.

A system with an angle as the dependent variable, like a body
confined to move on a circle or an ellipse, has a circle as configura-
tion space, and a rigid body in addition to moving around can rotate,
has a configuration space equal to R3 × SO(3).



mat 2440 spring 2017— ark 1 2

The phase space is another space associated to a a system of dif- phase space=faserom

ferential equation. In our context this will mostly coincide with the
configuration space. In physics, for instance, when one describes a
set of moving particles, the configuration space consists of the pos-
sible positions of the particales, whereas the phase space consists
of the possible positions and the possible velocities (or momenta).
When formulating a system like in (1) beneath, the velocities are in-
corporated in the system as independent variables, so the distinction
between the phase space and the configuration space space is not so
clear. The group SO(3) describes the rotation in

space and its element are the orthogonal
3× 3-matrices

.

The orbit or integral curve or flow line is the path a point in the
phase space follows when exposed to the solution through that point.
To be precise, assume that x(t) is a solution of 1 such that x(t0) = x0

defined in an interval J about t0. Then the orbit of x0 is the curve
parametrized by x(t). orbit=orbit eller bane; flow line=strøm-

linje.

The order of a differential equation or a system of differential equa- order=ordenen

tions is the order of the highest derivative that occur in the equation.
So among the two equations

y′ + p(t)y = q(t) y′′ + p1(t)y′ + p2(t)y + p3(t) = 0

the first one is of order one whereas the second is of order two. Many
differential equations arising in physics tend to be of the second
order since the Newtons law F = ma is of order two, but there are
many examples of equations of higher order, for instance Euler–
Bernoulli beam equation we mentioned above. Many other problems
are modelled by first order equations like population dynamic and
mixing problem arising in chemistry.

Every differential equation or system of differential equations can
be recast as a system of first order equation to the price of increasing
the number of equations in the system. To illustrate the procedure,
consider the the n-th order equation

y(n) + pn−1y(n−1) + · · ·+ p0y = 0. (X)

We shall transform this into a system of n equations of the first order,
and we do this by introducing the n new functions xi, for 0 ≤ i ≤
n − 1, by simply setting xi = y(i). Notice that x0 is just the original
function y. In this way the equation (X) above becomes equivalent to
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the following linear system

ẋ0 = x1

ẋ1 = x2

...

ẋn−2 = xn−1

ẋn−1 = −∑
j

pixi

For instance, a second order equation of the shape

ÿ + pẏ + qy = 0,

transforms into the system beneath that consists of two linear equa-
tions (remember x0 is just another name for y).

ẋ0 = x1

ẋ1 = ẋ1 − qx0

In matrix notation the system takes the form(
ẋ0

ẋ1

)
=

(
0 1
−q −p

)(
x0

x1

)
.

The avantage of this seemingly futile manoeuvre is that it yields a
unified way of formulating any system of ordinary differential, and
concequently opens up the way to general methods to study such
systems. Of course spesific methods for specific equations are usu-
ally the most effective, but they will always be based on the general
theory.

Any system of ordinary differential equation can thus be brought on
the form

ẋ = f (x, t) (1)

where x is vector whose components are continuously differentiable
functions of a variable t defined in an interval I and taking values in
Rn and the function f (x, t) is continous and takes values in Rn, and
any initial value problem can be formulated as

ẋ = f (x, t) x(t0) = x0.

We are a little vague about where the function f is de fiend, but it
must be defined for x in the configuration space and for t at least in
I.
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An autonomous system is one where the independent variable
atonomous=autonomt(e.g., time) is on appearing explicitly in the equations, i.e., the system

is on the form
ẋ = f (x).

Loosely speaking, an autonomous system is subjected to externale
driving forces.

A linear linear sytem of differential equation is one where the
sought for functions x1, . . . , xr and their derivatives enter linearly. Of
two following examples the first one is linear, the second is not

ẋ1 =x1 − x2 x′ + x2 + y = 0

ẋ2 =x1 + x2 y′ + y2 + 3x = 0

Nonlinear systems are usually very complicated to handle and they
often show an unexpected behavior. Linear symestems are more
bening, but of course, they can be challenging as well.

To be precise, let f (u, t) be a function where the variable u is a
vector and the variable t is a scalar. Assume that F is linear in u (but
not necessarily in t). The differential equation we consider has the
shape

ẋ = f (x, t) = 0. (c)

Using that differentiating functions is a linear operation one easily
verifies that if x1 and x2 are solutions of (c) then any linear combina-
tion c1x1 + c2x2, with the ci’s being constants, is a solution as well:

F(x1 + c2x2, t) = c1F(x1, t) + c2F(x2, t) =

= c1 ẋ1 + c2 ẋ2 = d/dt(c1x1 + c2x2).

The superpositions of to solutions of a linear system is a solution, or
expressed slightly differently: the solutions of a linear differential
equation form a vector space.

Be awear that our concept of linearity of a systems written on a
form as in (1) corresponds to linear and homogenous equation in the
traditional terminology. For example, the equation

y′′ + py′ + q = f (t)

is not linear in our terminology. It corresponds to the system(
ẋ0

ẋ1

)
=

(
0 1
−p −q

)(
x0

x1

)
+

(
0

f (t)

)
.

and the fuction to the right is not linear but affine.
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Oppgave 1.1. Write the third order equation

y′′′ + py′′ + qy′ + ry = 0

on materix form. What is the determinant of the corresponding ma-
trix? What is the characteristic polynomial? X

An affine system or an affine differential equation is one of the
affine=affintype

ẋ = f (x, t) + g(t), (2)

where f is a continuos function linear in x and defined for t in some
interval I, and g : I → Rn is a continous function. The assosiated linear
system is the system

ẋ = f (x, t).

Oppgave 1.2. Show that the general solution of of the affine system
(2 ) can be written as the general solution of the associated linear
system a particular solution of (2) (that mens just one). X

The logistic equation

This equation is also called the Verhulst equation after Pierre François
Verhulst It describes a population x(t) by the differential equation

ẋ = rx(1− x/k), (3)

where r is the net growth rate of the population when there are suf-
ficiently resources. The net growth rate includes both birth rates
and death rates, and it is one of the fundamental assumption on the
model that this rate is proportionalto the population and indepen-
dent of x. When there is a “fight for food” one assumes in the model
that the growths rate declines with the factor (1− x/k) where k is
called the carrying capacity of the population. The carrying capacity k
is the maximal population that can be supported in the long run.

The phase space; that is, the space where x can take values, equals
R+ = { x | x > 0 }.

Without doing any calculations, one can understand some qual-
itative aspects of the solutions. Clearly x(t) = k and x(t) = 0 are
solutions, they are called the equilibria or the equilibrium solutions. If
x > k, one sees that the derivative ẋ is negative, and the population
declines; however if x < k, then ẋ is positive, and the population
growths.

We can go one step further in the qualitative analysis and differen-
tiate 3 to obtain

ẍ = r(1− 2x/k)ẋ = r2x(1− x/k)(1− 2x/k).
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So we see that at points where x = k/2 the solution has an inflection
point. If x < k/2, or x > k the solution will be convex whereas it is
concave when k/2 < x < k.

It is not difficult to solve the logistics equation explicitly by the
method of separation of variables. To ease the calculation we replace
x by x/k, then it takes the form

ẋ = rx(1− x).

Dividing by x(1− x) and decomposing in the partial fraction gives is

(
1
x
+

1
1− x

)dx = rdt,

and integrating we arrive at

log |x/(1− x)| = rt + C

where C = log |x0/(1− x0)|. Hence it holds that

x/(1− x) = x0ert/(1− x0)

and finally we find

x(t) = x0/(x0 + (1− x0)e−rt).

After reinserting x/k for x and kr for r the complete solution is:

x(t) = x0/(x0 + (k− x0)e−rt).

Oppgave 1.3. If one also accepts negative solutions of the logistic
equation, discuss the behavior when the initial value x0 is negative. X

ě

Oppgave 1.4. There is a version of the logistic equation that incor-
porates a harvesting term h; that is, a constant term representing a
continuos exploitation of the population. The equation the looks like

ẋ = rx(1− x/k)− h.

Find the general solution and discussion the qualitative aspects. X

Two species— The Lotka–Volterra equation

In cas the population sustem one studies has two species there will
be two functions to determine, x(t) and y(t), and the phase space in
this case will be the first quadrant in R2.
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The first situation we look at is when to species both are “vegetar-
ian”, that is they are not eating each other. A simple model would
then be

ẋ = x(r− ax− by)

ẏ = y(r′ − a′y− b′x)

where r and s are the two growth rates for the two species, and the
other coefficients represents the “fight for the resourse”; they are all
assumed to be positive. The terms −bxy and −b′xy reflects the the
fact that y-species and the x-sepsecies use the same resources, and
that the propoersotanl ti the product xy is one of the fundamental
assumptions of the model.

Recap of some classical techniques

First order linear equations

These are equations with initial value problems of the form

y′ + p(t)y = q(t) y(t0) = y0 (4)

where t is assumed to be in an interval I where p and q are con-
tinuos functions. There is always a unique solution of such a prob-
lem, and there is a procedure to determine the solution expressed as
integrals—may be one can explicitly compute those integrals or many
can not, anyhow integrals are nice to handle. The trick is to use an
integrating factor. So let F be a primitive function for p vanishing at t0;
that is a function such that F′ = p and F(t0) = 0. When multiplied by This means that F(t) =

∫ t
t0

p(t)dt.

e−F equation (4) above becomes

(eFy)′ = eFy′ + peFy = qeF,

and integrating once more, we arrive at

y(t) = e−F(t)(
∫ t

t0

q(t)eF(t) + y0)dt.

Oppgave 1.5. Determine the general solution of the equation

y′ + y = sin t.

Determine a solution such that y(0) = 2, and one with y′(3π/2) = 1.
X

Oppgave 1.6. Determine the general solution of the equation

y′ − y = ae−bt (5)
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where a and b are positive constants. Show that y0(t) = −a/(b +

1)e−bt is a solution of the equation (5) and that it is the only solution
that tends to a limit when t → ∞. Assume that y is a solution such
that for some t0 it holds that y(t0) > y0(t0) then y(t) → ∞ then
limt→∞ y(t) = ∞ whereas limt→∞ y(t) = −∞ for solutions satisfying
y(t0) < y0(t0). Hint: Answer: cex − a/(b + 1)e−bx. X

Oppgave 1.7. Find the general solution of

(1 + x2)y′ + 3xy = 6x.

X

Oppgave 1.8. Let f (t) be a function defined and twice differentiable
in an interval I about zero, and at assume that f is positive. Let y(t)
be a solution of the equation

f (t)y′ + 3ty = 6t.

Show that y has a local maximum at t = 0 if y(0) > 2 and a local
minimum if y(0) < 2. X

Separable equations

Some first order equations of particular forms can be solved, at least
partially, even if they are not linear. One class of such are the separa-
ble equations. They are of the form

y′(t) = f (y)g(t)

where f and g are functions. Dividing through by f (t) and integrat-
ing one obtains ∫ dy

g(y)
=
∫

f (t)dt.

And if one is capable of both evaluating the integrals and solving the
ensuing equation for y, one has a solution. For example if y′ = xy
one finds y−1dy = dx and hence upon integrating one arrives at
log |y| = x2/2 + c where c is arbitrary. Solving for y, one finds the
general solution y = ce−x2/2 where c is an (other) arbitrary constant.

Oppgave 1.9. Find all solutions of

xy′ = y.

Can you give a geometric explanation of the equation? X
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Oppgave 1.10. Determine all solutions of the differential equation

y′ +
√

y− c = 0

where c is constant. Show that for any y0 > c there infinitely many
continuously differentiable solutions satisfying y(t0) = y0. How
many are twice differentiable? X

Oppgave 1.11. Consider the equation

y = xy′ − (y′)2, (6)

which is one of the equations named Clairot’s equations. If y is so-
lution of (6) show that y′ = x/2 or y′′ = 0, and conclude that the
solutions are either y = x2/4 or y = ax − a2 where a is an arbitrary
constant. Show that the linear solutions are all the tangent to the
parabola y = x2/4. What condition on must (x0, y0) satisfy for (6) to
have a solution with y(x0) = y0? X

Homogenuus equations

These are equations of the form

y′ = F(x, y)

where F is a homogenous of x and y of degree zero; for example,
F can be the quotient of two homogenous polynomials of the same
degree.

To solve such an equation, the trich is the substituion y = ux. Then
y′ = u′x + u, so we find

u′x + u = F(ux, x) = F(u, 1)

and this is a separable equations.

Eksempel 1.1. Let the equation be

y′ =
x + y
x− y

. Setting y = ux, we find

u′x + u =
x + ux
x− ux

=
1 + u
1− u

which yields
(1− u)du
(1 + u2)

=
dx
x

.

Integration gives the realtion

arctan u− log(1 + u2) = log |x|+ C
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that defiens u implicityly. One can solve u from this equation, but x
can be solved in terms of u

x = C(1 + u2) exp(arctan u).

e

Second order equations with constant coefficients

These equations are of the form

y′′ + ay′ + by = 0 (B)

where a and b are constants. To the equation (B) one associates the
following quadratic equation which is called the characteristic equation

r2 + ar + b = 0, (D)

and whose roots give the solutions of (B). The salient point is to test
if an exponential function ert—where r very well can be a complex
number—can satisfy (B). Using that the derivative of an exponential
is given as (ert)′ = rert, one easily finds

(ert)′′ + a(ert)′ + bert = (r2 + ar + b)ert,

hence the function ert solves (B) if and only if r is a root of the char-
acteristic equation (D). This almost reduces the solution of (B) to the
solution of the cacac algebraic equation (D),

If r1 and r2 are two different solutions of (D), any linear com-
bination of er1 t and er2 t solves (B); that is, the general solution is the
following

c1er1 t + c2er2 t .

There are basically three cases when the coefficients a and
b are real. Either the characteristic equation has two real roots, one
double real root, or two complex conjugate roots. Which case occurs
depends on the sign of the discriminant ∆ = a2 − 4b (that’s the one
under the square root in the formula).

In case the roots are real and different, the solutions are simply

c1er1t + c2er2t.

The asymptotic behavior of these functions depends on the signs of
Asymptotic behavior means the behavior when t→ ∞r1 and r2 (and of course on the constants c1 and c2). If both are neg-

ative they tend to zero as t tends to infinity. If both roots are positive
the solutions tend to ±∞; the sign depending on the sign of the dom-
inating term; that is, the term corresponding to the greatest ri. When
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the signs of r1 and r2 are different, the solutions tends to ±∞ when t
tends to ∞ and −∞, depending on the signs of the constants ci.

Figure 1.1: A damped oscullation.

In case the two roots are complex they must be complex conjugate
since the characteristic equation has real coefficients. Hence we may
write λ± = α ± βi with α and β real. The corresponding complex
constants are also conjugate so c± = u ± vi where u and v are real
vectors. We thus find, after some computation, the general solution

c+eαteβi + c−eαte−iβt = eαt(u cos βt + v sin βt). (7)

In case α < 0 the asymptotic behavior is a damped oscillation with

Figure 1.2: Some integral curves for
y′′ − 2y′ + y = 0 with the double root

r = 1.

circular frequency equal to β, if α > 0 it is an “exploding oscillation”.
The case α = 0 gives an oscillation with constant amplidude, and it
is called a harmonic oscillation. The general solution from (7) may be
brought on the form

x(t) = Aeαt sin(βt + φ)

where now the constants of integtation are the amplitude A and the
phase angle φ.

The last case occures when the characteristic equation has a double
root, say r. The general solution is on the form

x(t) = (c1 + c2t)ert.

The Wronskian determinant is a useful tool when working
with ODE’s. It can be defined for any number of functions, but in
our present context we stick to a pair of functions. The main reason
the Wronskian is interesting is that it detects whether solutions of a
linear equation are linearly independent or not. So let y1 and y2 be

Figure 1.3: Józef Maria Hoene-Wroński
(1776–1853) Polish mathematician and

Messianist philosopher

two functions. The Wronskian is defined as the determinant

Wronskian=Wronski-determinanten

W(y1, y2) =

∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣ = y1y′2 − y2y′1.

Since any linear relation between the two functions persist between
their derivatives, it is clear that the Wronskian of two linearly depen-
dent functions vanishes, but the interesting property of W(y1, y2) is
that the converse holds as well provided y1 and y2 are solution of the
same linear second homogenous equation. Indeed, Niels Henrik Abel
gave the formula beneath for the Wronskian W

W(y1, y2) = K exp(−
∫ x

x0

a(t)dt) (8)

where y1 and y2 are solutions of

y′′ + a(t)y′ + b(t)y = 0. (N)
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and x0 is any point in the interval where one considers the equation.
Indeed, one finds upon derivation

W ′ = (y1y′2 − y2y′1)
′ = y1y′′2 − y2y′′1 =

∣∣∣∣∣y1 y2

y′′1 y′′2

∣∣∣∣∣
Using that both functions y1 and y2 satisfy the equation (N) one finds

W ′ = y1y′′2−y2y′′1 =

=y1
(
− a(t)y′1 − b(t)y1

)
− y2

(
− a(t)y′2 − b(t)y2

)
= −a(t)W.

that is W satisfies the first order differential equation

W ′ = −aW

which has the solution as given in (8).

Oppgave 1.12. Show in detail that Wronskian of two linearly depen-
dent functions vanishes. X
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