MAT2440 - Differential equations and control theory

Solutions to the mandatory assignment

Problem 1. Let A be the following matrix

$$
A=\left(\begin{array}{lll}
1 & a & 0 \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)
$$

where a and b are two real numbers.
a) Determine the exponential $\exp t A$.
b) Find the fundamental solution $\Phi(t ; 0)$ of the differential equation

$$
\dot{x}=A x .
$$

c) Let $f(t)$ and c be given as

$$
f(t)=\left(\begin{array}{c}
e^{t} \\
1 \\
0
\end{array}\right) \quad c=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

Find the solution of the initial value problem

$$
\dot{x}=A x+f(t) \quad x(0)=c .
$$

a) The matrix A is given as

$$
A=\left(\begin{array}{lll}
1 & a & 0 \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right)
$$

where a and b are two real numbers. Clearly the characteristic polynomial equals $(\lambda-1)^{3}$, so one is an eigenvalue of multiplicity three (which is the maximal possible multiplicity). The matrix $N=A-I$ is therefore nilpotent; indeed, one has

$$
N^{2}=\left(\begin{array}{ccc}
0 & 0 & a b \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and it is easy to see that $N^{3}=0$. Since I and N commute, this gives $\exp t A=$ $\exp t(I+N)=\exp t I \exp t N=e^{t}\left(I+t N+t^{2} / 2 \cdot N^{2}\right)$, and thus

$$
\exp t A=e^{t}\left(\begin{array}{ccc}
1 & a t & a b t^{2} / 2 \\
0 & 1 & b t \\
0 & 0 & 1
\end{array}\right)
$$

b) The fundamental solution $\Phi(t ; 0)$ of the differential equation is $\exp t A$ above.
c) Multiplying through by $e^{-t A}$ we bring the equation on the form

$$
d / d t\left(x e^{-A t}\right)=e^{-t A} f(t)=\left(\begin{array}{c}
1-e^{-t} a t \\
e^{-t} \\
0
\end{array}\right)
$$

Integrating gives

$$
e^{-A t} x=\left(\begin{array}{c}
a\left(t e^{-t}+e^{-t}-1\right)+t+1 \\
1-e^{-t} \\
0
\end{array}\right)
$$

and hence

$$
x(t)=e^{t}\left(\begin{array}{c}
(a+1) t-a\left(1-e^{-t}\right)+1 \\
1-e^{-t} \\
0
\end{array}\right)
$$

Problem 2. Consider the differential equation

$$
\dot{x}=B x
$$

where B is the matrix

$$
B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Sketch the phase portrait. Which solutions are stable (i.e., bounded when $t \rightarrow \infty$) and which are not?

The eigenvalues of B are ± 1 with eigenvectors $(1,1)$ and $(1,-1)$. Hence the solutions are of the form

$$
x(t)=c_{1} e^{t}\binom{1}{1}+c_{2} e^{-t}\binom{1}{-1}
$$

and $|x(t)|$ tends to infinity with t if $c_{1} \neq 0$. Hence the only stable solutions are

$$
c_{2} e^{-t}\binom{1}{-1}
$$

Problem 3. Consider the differential equation

$$
\begin{equation*}
\dot{x}=4 / 3 x^{1 / 4} . \tag{}
\end{equation*}
$$

a) For which closed intervals $I=[\alpha, \beta]$ with $0 \leq \alpha<\beta$ is the function $f(x)=x^{1 / 4}$ Lipschitz? For each I where f is Lipschitz give a Lipschitz constant K for f.
a) For which pairs $\left(t_{0}, x_{0}\right)$ of real numbers is there a unique solution of
$\left.{ }^{*}\right)$ with $x\left(t_{0}\right)=x_{0}$?
b) Let t_{0} be a positive real number. Find all solutions of $(*)$ satisfying $x\left(t_{0}\right)=0$.
a) The function $f(x)=x^{1 / 4}$ is only defined for $x \geq 0$, and for $x>0$ its derivative equals $f^{\prime}(x)=1 / 4 \cdot x^{-3 / 4}$. Assume first that $\alpha>0$. For any two points x, y from $[\alpha, \beta]$ the Mean Value Theorem gives

$$
f(x)-f(y)=1 / 4 \cdot c^{-3 / 4}(x-y)
$$

where c lies between x and y and hence is greater than α. The function $t^{-3 / 4}$ decreases so we obtain

$$
|f(x)-f(y)|=1 / 4 c^{-3 / 4}|x-y| \leq 1 / 4 \cdot \alpha^{-3 / 4}|x-y|
$$

It follows that f is Lipschitz on $[\alpha, \beta]$ with constant $1 / 4 \cdot \alpha^{-3 / 4} / 4$.
However, f is not Lipschitz on $[0, \beta]$. Again the Mean Value Theorem (this time on the interval $[0, x]$) gives

$$
f(x)=1 / 4 \cdot c^{-3 / 4} x
$$

where $0<c<x$, and as $c^{-3 / 4} \rightarrow \infty$ when $x \rightarrow 0$, the function f is not Lipschitz on $[0, \beta]$.
b) If $x_{0}>0$ an application of the Picard-Lindlöf theorem, (or if you want, an explicit solution of the equation, see below) shows that there is a unique solution taking the value x_{0} at time t_{0} for any t_{0}. However, when $x_{0}=0$ there are two solutions with $x\left(t_{0}\right)=0$.

Separating the variables, one finds in the region where $x \neq 0$, that

$$
3 / 4 \cdot x^{-1 / 4} d x=d t
$$

and hence by integration

$$
x=(t+c)^{4 / 3}
$$

where c is a constant. One should be careful here; this is a solution only when $t+c \geq 0$, since for $t+c<0$, it holds true that $(t+c)^{1 / 3}=-x^{1 / 4}$.

Additionally, the constant function $x=0$ is a solution as well.
At the point $t=-c$ one finds that the derivative $4 / 3 \cdot(t+c)^{1 / 3}$ of $(t+c)^{4 / 3}$ vanishes, hence the function $y(t)$ defined by

$$
y(t)= \begin{cases}(t+c)^{4 / 3} & \text { if } t>-c \\ 0 & \text { if } t \leq-c\end{cases}
$$

is continuously differentiable and solves the differential equation. Hence there are two solutions with $x(-c)=0$.

Problem 4. a) Let N be a nilpotent $n \times n$-matrix. Show that all eigenvalues of N are zero, and conclude that the characteristic polynomial of N is λ^{n}. Hint: If v is an eigenvector with eigenvalue λ, then $N^{i} v=\lambda^{i} v$.
b) Let A be any $n \times n$-matrix. Show that $\operatorname{det}(\exp A)=\exp (\operatorname{tr} A)$.

Hint: Treat the cases when A is semi-simple and nilpotent separately. Then combine.
a) Let v be an eigenvector of N whose corresponding eigenvalue is λ. The $v \neq 0$ by definition of an eigenvector, and $N(v)=\lambda v$. It follows by induction on i that $N^{i}(v)=\lambda^{i} v$ for any integer i, but as N is nilpotent, $N^{i_{0}}=0$ for some i_{0}. Hence $\lambda^{i_{0}} v=0$ and by consequence $\lambda=0$ since $v \neq 0$.
b) If A is semi-simple, one may write $A=P \Lambda P^{-1}$ where Λ is diagonal, and since $\operatorname{tr} A=\operatorname{tr} \Lambda$ and

$$
\operatorname{det} \exp A=\operatorname{det} P(\exp \Lambda) P^{-1}=\operatorname{det} \Lambda
$$

we may assume that A is diagonal. Then

$$
\operatorname{det} \exp A=e^{\lambda_{1}} \ldots e^{\lambda_{n}}=e^{\lambda_{1}+\ldots+\lambda_{n}}=\exp \operatorname{tr} A
$$

If N is nilpotent, $\operatorname{tr} N=0$, and it suffices to see that $\operatorname{det} \exp N=1$. Now $\exp N=I+P(N)$ where $P(N)=N+1 / 2 \cdot N+\ldots+1 / n!\cdot N^{n}$, but $P(N)$ is clearly nilpotent (it can be written as $P(N)=N B$ where N and B commute), and all eigenvalues are zero. It follows that all eigenvalues of $I+P N$ equal one, and hence $\operatorname{det} \exp N=1$.

In general, write $A=S+N$ where S is semi-simple and N nilpotent and S and N commute. Then

$$
\begin{aligned}
\operatorname{det} \exp A & =\operatorname{det} \exp (S+N)=\operatorname{det} \exp S \exp N=\operatorname{det} \exp S \operatorname{det} \exp N \\
& =\exp \operatorname{tr} S \exp \operatorname{tr} N=\exp (\operatorname{tr} S+\operatorname{tr} N)=\exp \operatorname{tr}(S+N)=\exp \operatorname{tr} A
\end{aligned}
$$

Problem 5. Given two function $u(t)$ and $v(t)$ both twice continously differentiable in an interval I. Define the Wronskian determinant $W(t)$ of the two as the determinant

$$
W(t)=\operatorname{det}\left(\begin{array}{cc}
u & v \\
u^{\prime} & v^{\prime}
\end{array}\right)
$$

a) Show that

$$
W(t)^{\prime}=\operatorname{det}\left(\begin{array}{cc}
u & v \\
u^{\prime \prime} & v^{\prime \prime}
\end{array}\right)
$$

b) Assume that $u(t)$ and $v(t)$ both are solutions of the differential equation

$$
y^{\prime \prime}+a(t) y^{\prime}+b(t) y=0
$$

Show that the Wronskian satisfies the equation

$$
W^{\prime}(t)=-a(t) W(t)
$$

and deduce that for a suitable constant C it holds true that

$$
W(t)=C \exp \left(-\int_{t_{0}}^{t} a(t) d t\right)
$$

c) Conclude that if $\left(u(t), u^{\prime}(t)\right)$ and $\left(v(t), v^{\prime}(t)\right)$ are linearly independent for one value $t=t_{0}$, then they are linearly independent for all $t \in I$.
a) One finds

$$
W^{\prime}=\left(u v^{\prime}-v u^{\prime}\right)^{\prime}=u^{\prime} v^{\prime}+u v^{\prime \prime}-v^{\prime} u^{\prime}-v u^{\prime \prime}=u v^{\prime \prime}-u^{\prime \prime} v=\operatorname{det}\left(\begin{array}{cc}
u & v \\
u^{\prime \prime} & v^{\prime \prime}
\end{array}\right) .
$$

b) One finds if $u^{\prime \prime}=-a u^{\prime}-b u$ and $v^{\prime \prime}=-a v^{\prime}-b v$ that

$$
W=\operatorname{det}\left(\begin{array}{cc}
u & v \\
-a u^{\prime}-u & -a v^{\prime}-b v
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
u & v \\
-a u^{\prime} & -a v^{\prime}
\end{array}\right)=-a W \text {. }
$$

By the classical formula for the solutions of a first order equation, it follows that

$$
W(t)=C \exp \left(-\int_{t_{0}}^{t} a(t) d t\right)
$$

c) If $\left(u\left(t_{0}\right), u^{\prime}\left(t_{0}\right)\right)$ and $\left(v\left(t_{0}\right), v^{\prime}\left(t_{0}\right)\right)$ are independent, one sees that for the constant C above one has

$$
W\left(t_{0}\right)=C \neq 0,
$$

hence since the exponential function never vanishes, it follows that $W(t) \neq 0$ for any t and hence $\left(u(t), u^{\prime}(t)\right)$ and $\left(v(t), v^{\prime}(t)\right)$ are linearly independent.

