UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT2700 — Introduction to Mathematical

Finance and Investment Theory

Day of examination: Friday, December 13th, 2013

Examination hours: 14.30 – 18.30

This problem set consists of 3 pages.

Appendices: None

Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Consider a single-period market consisting of a bank account $B = \{B_0, B_1\}$ and one risky asset $S = \{S_0, S_1\}$. The current values of the assets are $B_0 = 1$ and $S_0 > 0$. The risk-free interest rate is r > 0. The sample space Ω consists of two states ω_1 and ω_2 , where the probability of ω_1 occurring is $p \in (0, 1)$. The risky asset can either go up to $S_1 = uS_0$ (if $\omega = \omega_1$) or down to $S_1 = dS_0$ (if $\omega = \omega_2$), where u > 1 and d < 1 are given numbers.

1a

Consider a claim X_u that gives 1 krone in the up state and nothing in the down state. Determine the trading strategy that generates X_u . What is the initial portfolio value?

Similarly, determine the trading strategy and initial portfolio value of the claim X_d that gives 1 krone in the down state and nothing in the up state.

1b

Show that the risk-neutral probability measure is $Q = \left(\frac{1+r-d}{u-d}, \frac{u-(1+r)}{u-d}\right)^T$, provided u > 1 + r.

1c

Take $S_0 = 100$, u = 11/10, d = 9/10. State the condition on r ensuring that the market is complete, and then use the risk-neutral valuation formula to find the prices of call and put options with exercise prices respectively 109 (call) and 91 (put).

1d

Consider the general market model given at the beginning of Problem 1. Denote by U(w) the utility function

$$U(w) = \ln(w), \qquad w > 0.$$

Use the (two-steps) risk-neutral computational approach to solve the problem of maximizing expected utility of terminal wealth, with initial wealth $V_0 = \nu$, for a given $\nu > 0$:

$$\max_{H \in \mathbf{R}^2} E\left[U\left(V_1\right)\right], \qquad V_0 = \nu,$$

where $V_1 = H_0 B_1 + H_1 S_1$ is the terminal wealth. Justify your arguments (derive the formulas you use).

Problem 2

A stock price is currently \$100. In three months it will be either \$125 (with probability 2/5) or \$80 (with probability 3/5). If it rises to \$125 in three months, then it will either be \$150 (with probability 2/5) or \$100 (with probability 3/5) after another three months. If it drops to \$80 after the first three months, then after another three months it will be either \$100 (with probability 2/5) or \$75 (with probability 3/5). The bank process is $B_0 = 1$, $B_1 = 1 + r$, and $B_2 = (1 + r)^2$, where r > 0 is the per annum interest rate.

2a

Identify the stock prices S_t at the trading dates t=0,1,2, and the probability $P(\omega)$ attached to each "state of the world" ω . Determine the filtration $\mathbb{F} = \{\mathcal{F}_t\}_{t=0,1,2}$ generated by the price process $S = \{S_0, S_1, S_2\}$ (justify your answer).

2b

Show that the risk-neutral probability (martingale) measure

$$Q = (Q_1, Q_2, Q_3, Q_4)^T$$

is given by

$$Q_1 = \frac{2}{9}(1+5r)^2, \quad Q_2 = \frac{2}{9}(1-25r^2),$$

$$Q_3 = \frac{1}{9}(1-4r)(16r+1), \quad Q_4 = \frac{4}{9}(1-4r)^2,$$

provided r < 1/5.

2c

Let X be the payoff of a put option that expires at T=2 with an exercise price $K=75+(1+r)^2$. Take r=1/10 and use the risk-neutral valuation formula to compute the arbitrage-free price of the claim X at time t=0.

Determine the replicating portfolio for this put option, i.e., the trading strategy that generates X. Work backwards in time, deriving simultaneously the value process V and trading strategy H.

(Continued on page 3.)

Problem 3

Consider the single-period market model from Problem 1. Given a trading strategy $H = (H_0, H_1)^T$, denote by $V = \{V_0, V_1\}$ the portfolio value. The returns of the (bank/stock) assets are denoted by R_0, R_1 , while R denotes the portfolio return.

3a

Show that the portfolio value at time t = 1 can be expressed as

$$V_1 = V_0 (1 + r + F(R_1 - r)), \qquad F = \frac{H_1 S_0}{V_0},$$

and then compute R_1, V_1 using the values of S in Problem 1.

3b

An investor is prohibited by stock exchange rules from selling stocks short. This imposes a constraint on the admissible trading strategies. Denote the set of admissible strategies by \mathbb{K} . Express the set \mathbb{K} in terms of the fraction F introduced in (3a). Compute the support function $\delta(\kappa)$ of $-\mathbb{K}$ and its effective domain $\tilde{\mathbb{K}}$.

3c

Make use of the risk-neutral probability approach to solve the constrained maximization problem

$$\max_{F \in \mathbb{K}} E\left[U(\nu(1+r+F(R_1-r)))\right], \qquad V_0 = \nu > 0,$$

where the utility function is $U(w) = \ln(w)$. You can take p = 1/2, r = 1/10, u = 12/10, and d = 8/10. [Hint: If necessary, use results from Problem 1 to simplify the computations.]