
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Exam in: MAT3100 –– Linear Optimization

Day of examination: Tuesday, June 12th, 2018

Examination hours: 14.30 – 18.30

This problem set consists of 6 pages.

Appendices: None

Permitted aids: None.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1

a

Consider the LP problem

max 5x1 + 10x2

subject to
x1 + 3x2 ≤ 50,

4x1 + 2x2 ≤ 60,

x1 ≤ 5,

x1, x2 ≥ 0.

(1)

Determine the dual problem linked to (1). Write (1) and the dual problem
in matrix form (with inequality constraints).
Solution. The dual problem can be written

min 50y1 + 60y2 + 5y3

subject to
y1 + 4y2 + y3 ≥ 5,

3y1 + 2y2 ≥ 10,

y1, y2, y3 ≥ 0.

(2)

Let

c =

(
5
10

)
, A =

1 3
4 2
1 0

 , b =

50
60
5

 ,

(Continued on page 2.)
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The primal problem is then

max cTx

subject to
Ax ≤ b
x ≥ 0

(3)

and the dual is

min bT y

subject to

yTA ≥ cT

y ≥ 0

(4)

b

State the complementary slackness theorem for a general LP problem.
Suppose (x1, x2) = (5, 15) is an optimal solution to (1). Use the
complementary slackness theorem to solve the dual problem of (1).
Solution.

Let x,w be a feasible solution for the primal and y, z for the dual problem
respectively. These are optimal iff

xjzj = 0

for each j and
yiwi = 0

for each i. By inspection we see that w2 > 0 and hence y2 = 0. Moreover,
since x1, x2 > 0 we have z1 = z2 = 0 and hence both dual constraints
n (2) hold exactly. Using these we may solve for the remaining variables:
y1 = 10/3 and y3 = 5/3.

c

(i) What is the definition of a convex set C ⊂ Rn.
Solution. C is convex iff for all x1, x2 ∈ C and λ ∈ [0, 1]

(1− λ)x1 + λx2 ∈ C.

(ii) Let f : C → R be a convex continuous function. What does it mean
(definition) that f is convex? Illustrate your definition with a figure.
Solution. f is convex iff for each λ ∈ [0, 1]

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2)

See the figure below.

d

(i) Prove that a non-empty set S ⊂ Rn of optimal solutions to a LP problem
is convex.

(Continued on page 3.)
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Figure 1: A convex function, in problem 1.c ii)

Solution. Let C denote the set of optimal solutions to an LP, i.e the set
of x ∈ Rn that satisfies (1) with optimal value cTx = η for some η ∈ R.
Suppose x1, x2 ∈ C and λ ∈ [0, 1] and consider

x = (1− λ)x1 + λx2.

Since
Ax = (1− λ)Ax1 + λAx2 ≤ (1− λ)b+ λb = b

and
cTx = ((1− λ)cTx1 + λcTx2) = (1− λ)η + λη = η

we see that x ∈ C. Hence we may conclude that C is convex.
(ii) Consider a LP problem with two optimal solutions x1 and x2. Explain
that this problem must in fact possess infinitely many optimal solutions.
Solution. Since C is convex, any λ ∈ [0, 1] yields a solution

x = (1− λ)x1 + λx2 ∈ C.

Problem 2

a

Determine the pure minmax and maxmin strategies for the game given by

A =

2 0 1
4 −3 2
1 −2 −2

 ∈ R3×3.

Does the game have a value? You must justify your answers (include
definitions of the involved concepts).
Solution. The minmax strategy (for the row player) is to minimize the
maximal payoff over all rows, i.e.

min
i

max
j
aij = 1

The maxmin strategy (for the column player) is to maximize the minimal
payoff over all columns, i.e.

max
j

min
i
aij = 1.

Since the two match, we say that the game has a value, in this case 1

(Continued on page 4.)
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b

Consider the game called Odd-or-Even. The row and column players
simultaneously call out one of the numbers 1 or 2. The row player wins
if the sum of the numbers is odd. The column player wins if the sum of the
numbers is even. The amount paid to the winner by the loser is always the
sum of the numbers in kroner.

This is an example of a two-person zero-sum game, so that the payoff of
the column player is the negative of the payoff of the row player. We will
therefore restrict attention to the payoff matrix of the row player, which is
denoted by A. For the Odd-or-Even game the payoff matrix becomes

A =

(
−2 3
3 −4

)
, (5)

where a negative amount means that the row player pays the absolute value
of this amount to the column player.

What do we mean by a saddle point of a general game A = {ai,j} ∈ Rm×n?
Does the Odd-or-Even game (7) possess a saddle point?
Solution. A saddle point is an element ars of A for which

arj ≤ ars ≤ ais

for all i, j, i.e. an element that is smallest in its column (s) and largest in
its row (r). The Odd-Even game has no saddle-point,

c

We consider mixed (randomized) strategies x = (x1, x2) and y = (y1, y2)
of the Odd-or-Even game (7), given by two numbers p, q ∈ (0, 1). The row
player chooses i = 1 with probability x1 = p ∈ (0, 1). The column player
chooses j = 1 with probability y1 = q ∈ (0, 1).

Solve the Odd-or-Even game by finding "equalizing strategies", that is,
determine p such that if the row player chooses i = 1 with probability p,
then the average payoff of the row player is the same whether the column
player chooses j = 1 or j = 2. Compute the average payoff of the row player
(with the probability p that you found).
Solution. We let y = (p, 1− p) and find

yTAx = (p, 1− p)
(
−2 3
3 −4

)
x =

(
3− 5p 7p− 4

)
x (6)

Since the expected payoff yTAx should be indifferent to the column players
choice x we require that 3−5p = 7p−4, hence p = 7/12. The average payoff
is 3− 5 ∗ 7/12 = 1/12.

Formulate the analogous principle for the column player, and use it to
determine the probability q. Compute the average payoff of the column
player (with the probability q that you found).

(Continued on page 5.)
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Solution. We let x = (q, 1− q) and find

yTAx = yT
(
−2 3
3 −4

)
(q, 1− q)T = yT

(
3− 5q
7q − 4

)
(7)

Since the expected payoff yTAx should be indifferent to the row players
choice y we require that 3−5q = 7q−4, hence q = 7/12. The average payoff
is 3− 5 ∗ 7/12 = 1/12.

Is the game is fair?
Solution. The game is not fair since the expected payoff (for the row
player) is positive.

Problem 3

Consider the LP problem

max x1 + 2x3

subject to
x1 + 2x2 + x3 ≤ 2,

x3 ≤ 1,

x1, x2, x3 ≥ 0.

(8)

a

Use the simplex method to solve (8).
Solution. The first dictionary is

η = x1 + 2x3
w1 = 2− x1 − 2x2 − x3
w2 = 1− x3

(9)

which is primal feasible. Take x3 into basis and w2 out. This gives

η = 2 + x1 − 2w2

w1 = 1− x1 − 2x2 + w2

x3 = 1− w2

(10)

Take x1 into basis and w1 out. This gives

η = 3− w1 − 2x2 − w2

x1 = 1− w1 − 2x2 + w2

x3 = 1− w2

(11)

which is feasible and optimal. The solution is x = (1, 0, 1) and the optimal
value is 3.

b

Prove that if x∗ and y∗ are feasible for the primal and dual problems,
respectively, and the corresponding objective values coincide, then x∗ and
y∗ are optimal for their respective problems.

(Continued on page 6.)
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Solution. From the constraints of the two problems we can deduce that

cTx ≤ yTAx ≤ yT b

for all feasible x and y. If cTx∗ = bT y∗, this implies that there cannot be
better feasible solutions for either problem.

c

Identify the dual problem linked to the LP problem

max 4x1 + 5x2 + 6x3,

x1 + x3 ≤ 1,

x1 + x2 ≤ 2,

x2 + x3 ≤ 3,

x1, x2, x3 ≥ 0.

(12)

Without explicitly solving the problems, show that (x1, x2, x3) = (0, 2, 1) is
the optimal solution of (12) and that (y1, y2, y3) = (52 ,

3
2 ,

7
2) is the optimal

solution of the dual problem.
Solution. The dual is

min y1 + 2y2 + 3y3,

y1 + y2 ≥ 4,

y2 + y3 ≥ 5,

y1 + y3 ≥ 6,

y1, y2, y3 ≥ 0.

(13)

It is easily checked that (x1, x2, x3) is primal feasible (satisfies the
constraints) and (y1, y2, y3) is dual feasible. The primal objective value is 16,
which is identical to the dual objective value. These solutions are optimal
by strong duality.

THE END


