UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: MAT3100 — Linear optimization

Day of examination: 0900, 3 June 2020 - 0900, 10 June 2020

This problem set consists of 3 pages.

Appendices: None

Permitted aids: All

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 8 part questions will be weighted equally.

Problem 1 Simplex method

Consider the LP problem

$$\begin{array}{llll} \text{maximize} & -x_1 & +3x_2 \\ \text{subject to} & -x_1 & +x_2 & \leq 1, \\ & x_1 & & \leq 4, \\ & x_2 & \leq 3, \\ & x_1, x_2 \geq 0. \end{array}$$

1a

Solve this using the simplex method with initial feasible solution $(x_1, x_2) = (0,0)$. Find an optimal solution and corresponding optimal objective value.

1b

Illustrate the problem geometrically. Draw the feasible region and the contour line of the objective function $f(x_1, x_2) = -x_1 + 3x_2$ that passes through the optimal solution.

Problem 2 Standard form

Convert the LP problem

(Continued on page 2.)

into standard form (the form suitable for the simplex algorithm). Note that $x_3 \in \mathbb{R}$ is a free variable. What form of the simplex algorithm will be required to solve it? (do not try to solve it).

Problem 3 Duality

Consider the LP problem

maximize
$$\sum_{j=1}^{n} c_j x_j,$$
 subject to
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad i = 1, 2, \dots, m,$$

$$x_j \ge 0, \quad j = 1, 2, \dots, n,$$

and its dual

minimize
$$\sum_{i=1}^{m} b_i y_i,$$
 subject to
$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j, \quad j=1,2,\ldots,n,$$

$$y_i \ge 0, \quad i=1,2,\ldots,m.$$

3a

Let w_i be the *i*-th slack variable in the primal problem, i = 1, 2, ..., m, and let z_j be the *j*-th slack variable in the dual problem, j = 1, 2, ..., n. Derive the following identity:

$$\sum_{i=1}^{m} b_i y_i - \sum_{j=1}^{n} c_j x_j = \sum_{i=1}^{m} w_i y_i + \sum_{j=1}^{n} z_j x_j, \tag{1}$$

and use it to prove the Weak Duality Theorem.

3b

Recall that the Strong Duality Theorem states that if (P) has an optimal solution x^* then (D) has an optimal solution y^* and that

$$\sum_{j} c_j x_j^* = \sum_{i} b_i y_i^*.$$

State the Complementary Slackness Theorem and and prove it using the identity (1).

(Continued on page 3.)

3c

What is the optimal solution to the dual of the LP problem in Problem 1?

Problem 4 Network flow

Consider the minimum cost network flow problem based on the directed graph shown in the figure. The number associated with each directed edge

(i, j) is its cost $c_{i,j}$ (per unit flow). The number associated with each node i is the supply b_i .

4a

Let T_1 be the spanning tree consisting of the edges

Compute the tree solution x corresponding to T_1 .

4b

Use the network simplex method to find an optimal solution and optimal value for the flow problem.

Good luck!