UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: MAT3100 — Linear optimization

Day of examination: 0900, 3 June 2020 - 0900, 10 June 2020

This problem set consists of 6 pages.

Appendices: None

Permitted aids: All

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 8 part questions will be weighted equally.

Problem 1 Simplex method

Consider the LP problem

$$\begin{array}{llll} \text{maximize} & -x_1 & +3x_2 \\ \text{subject to} & -x_1 & +x_2 & \leq 1, \\ & x_1 & & \leq 4, \\ & & x_2 & \leq 3, \\ & & x_1, x_2 \geq 0. \end{array}$$

1a

Solve this using the simplex method with initial feasible solution $(x_1, x_2) = (0, 0)$. Find an optimal solution and corresponding optimal objective value.

Answer: The initial dictionary is

 x_2 enters the basis, w_1 leaves:

$$\begin{array}{rclrcr}
 \eta & = & 3 & +2x_1 & -3w_1 \\
 x_2 & = & 1 & +x_1 & -w_1 \\
 w_2 & = & 4 & -x_1 & \\
 w_3 & = & 2 & -x_1 & +w_1
 \end{array}$$

 x_1 enters the basis, w_3 leaves:

(Continued on page 2.)

This dictionary is optimal. The optimal solution is $(x_1, x_2) = (2, 3)$ (and $w_1 = w_3 = 0, w_2 = 2$) with $\eta = 7$.

1b

Illustrate the problem geometrically. Draw the feasible region and the contour line of the objective function $f(x_1, x_2) = -x_1 + 3x_2$ that passes through the optimal solution.

Answer: The feasible region is the 5-sided polygon with vertices (0,0), (4,0), (4,3), (2,3), (0,1). The contour line is the straight line passing through the vertex (2,3) perpendicular to the vector (-1,3).

Problem 2 Standard form

Convert the LP problem

into standard form (the form suitable for the simplex algorithm). Note that $x_3 \in \mathbb{R}$ is a free variable. What form of the simplex algorithm will be required to solve it? (do not try to solve it).

Answer: We can convert the constraints as follows:

To deal wih the free variable x_3 we let $x_3 = y_3 - y_4$ for $y_3, y_4 \ge 0$. Then the standard form is

(Continued on page 3.)

The 2-phase simplex method will be required because the right hand side is not non-negative.

Problem 3 Duality

Consider the LP problem

maximize
$$\sum_{j=1}^n c_j x_j,$$
 subject to
$$\sum_{j=1}^n a_{ij} x_j \leq b_i, \quad i=1,2,\ldots,m,$$

$$x_j \geq 0, \quad j=1,2,\ldots,n,$$

and its dual

minimize
$$\sum_{i=1}^{m} b_i y_i,$$
 subject to
$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j, \quad j = 1, 2, \dots, n,$$

$$y_i \ge 0, \quad i = 1, 2, \dots, m.$$

3a

Let w_i be the *i*-th slack variable in the primal problem, i = 1, 2, ..., m, and let z_j be the *j*-th slack variable in the dual problem, j = 1, 2, ..., n. Derive the following identity:

$$\sum_{i=1}^{m} b_i y_i - \sum_{j=1}^{n} c_j x_j = \sum_{i=1}^{m} w_i y_i + \sum_{j=1}^{n} z_j x_j, \tag{1}$$

and use it to prove the Weak Duality Theorem.

Answer: The slack variables are

$$w_i := b_i - \sum_{j=1}^n a_{ij} x_j, \quad i = 1, 2, \dots, m,$$

 $z_j := \sum_{j=1}^m a_{ij} y_i - c_j, \quad j = 1, 2, \dots, n.$

(Continued on page 4.)

Then

$$\sum_{i=1}^{m} b_i y_i - \sum_{j=1}^{n} c_j x_j = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j + w_i \right) y_i - \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i - z_j \right) x_j$$
$$= \sum_{i=1}^{m} w_i y_i + \sum_{j=1}^{n} z_j x_j.$$

The weak duality theorem states that if $x = (x_1, x_2, ..., x_n)$ is feasible for (P) and $y = (y_1, y_2, ..., y_m)$ is feasible for (D) then

$$\sum_{i} c_j x_j \le \sum_{i} b_i y_i.$$

To prove it, suppose x is feasible for (P) and y is feasible for (D). Then all the variables x_j, y_i, z_j, w_i are non-negative and the right hand side of (1) is non-negative. Therefore,

$$\sum_{i} b_i y_i - \sum_{j} c_j x_j \ge 0.$$

3b

Recall that the Strong Duality Theorem states that if (P) has an optimal solution x^* then (D) has an optimal solution y^* and that

$$\sum_{j} c_j x_j^* = \sum_{i} b_i y_i^*.$$

State the Complementary Slackness Theorem and and prove it using the identity (1).

Answer: The complementary slackness theorem says that feasible x and y are optimal if and only if

$$x_j z_j = 0, \quad j = 1, 2, \dots, n,$$

 $y_i w_i = 0, \quad i = 1, 2, \dots, m.$ (2)

To prove it, suppose x and y are optimal. Then by (1),

$$\sum_{i} w_i y_i + \sum_{j} z_j x_j = 0.$$

Then all the products $x_j z_j$ and $y_i w_i$, being non-negative, must be zero. Conversely, suppose that (2) holds. Then by (1),

$$\sum_{i} b_i y_i - \sum_{i} c_j x_j = 0.$$

3c

What is the optimal solution to the dual of the LP problem in Problem 1?

Answer: The optimal dual dictionary is the negative transpose of the optimal primal dictionary, which, from Problem 1a, is

So the optimal solution is $(y_1, y_2, y_3) = (1, 0, 2)$ (and $z_1 = z_2 = 0$) with $\eta = 7$ as in the primal solution.

Problem 4 Network flow

Consider the minimum cost network flow problem based on the directed graph shown in the figure. The number associated with each directed edge

(i, j) is its cost $c_{i,j}$ (per unit flow). The number associated with each node i is the supply b_i .

4a

Let T_1 be the spanning tree consisting of the edges

Compute the tree solution x corresponding to T_1 .

Answer: The flow balance equation at node i is

sum of outflow – sum of inflow =
$$b_i$$
.

By 'tree solution' we mean that there is zero flow on edges not in T_1 , i.e.,

$$x_{ac} = x_{bd} = 0.$$

Using leaf elimination, for example, in the given order of the three edges of T_1 , we use the supplies b_i to obtain

$$x_{ab} = 1$$
, $x_{ad} = 2$, $x_{dc} = 4$.

(Continued on page 6.)

4b

Use the network simplex method to find an optimal solution and optimal value for the flow problem.

Answer: x above is a feasible solution. We compute the dual variables using $y_j = y_i + c_{ij}$ for each edge (i, j) in T_1 . Use node a as the root and set $y_a = 0$. Then

$$y_a = 0$$
, $y_b = 5$, $y_c = 6$, $y_d = 4$.

We now compute the dual slacks $z_{ij} = c_{ij} - (y_j - y_i)$ on the edges (i, j) not in T_1 :

$$z_{ac} = -5, \quad z_{bd} = 4.$$

Since z_{ac} is negative, x is not an optimal solution. So, we pivot. We take x_{ac} into the basis. If we increase x_{ac} from 0 to ϵ , then from the supplies, the new flows are as before, except in the cycle (a, c), (c, d), (b, d) where they are

$$x_{ac} = \epsilon, \quad x_{cd} = 4 - \epsilon, \quad x_{ad} = 2 - \epsilon.$$

The maximum allowed increase in x_{ac} is therefore $\epsilon = 2$, and this makes $x_{ad} = 0$, and so x_{ad} leaves the basis. This gives us a new spanning tree T_2 with edges

and the new tree solution x is given by

$$x_{ad} = x_{bd} = 0$$
,

and

$$x_{ab} = 1$$
, $x_{ac} = 2$, $x_{cd} = 2$.

The dual variables, with $y_a = 0$, are

$$y_a = 0,$$
 $y_b = 5,$ $y_c = 1,$ $y_d = -1,$

and then

$$z_{ad} = 5, \quad z_{bd} = 9.$$

Now all the z_{ij} are non-negative and so x is an optimal solution. The optimal objective value (minimum cost) is

$$\sum_{(i,j)\in T_2} c_{ij} x_{ij} = c_{ab} x_{ab} + c_{ac} x_{ac} + c_{cd} x_{cd} = 5 \times 1 + 1 \times 2 + 2 \times 2 = 11.$$

Good luck!