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Examination in: MAT3100 — Linear optimization.
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Examination hours: 09:00 – 13:00.

This problem set consists of 7 pages.

Appendices: None.

Permitted aids: All.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

All 10 part questions will be weighted equally.

Problem 1 (Simplex method). We will consider the following LP.

max −x1 − 2x2
s.t. −x1 − x2 ≤ −2

x1 − x2 ≤ 2
−x1 + x2 ≤ 2
x1 + x2 ≤ 6

x1, x2 ≥ 0

(1)

a) Write down the dual problem. Write also both the primal and dual
problems in matrix form.
Solution: The dual problem is

min −2y1 + 2y2 + 2y3 + 6y4
subject to −y1 + y2 − y3 + y4 ≥ −1

−y1 − y2 + y3 + y4 ≥ −2
y1, y2, y3, y4 ≥ 0

The primal and dual problems can be written as

max cTx
s.t. Ax ≤ b

x ≥ 0

and
min bTy
s.t. ATy ≥ c

y ≥ 0

where

A =


−1 −1
1 −1
−1 1
1 1

 b =


−2
2
2
6

 c =

(
−1
−2

)
.

(Continued on page 2.)
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b) Draw the feasible region of (1).
Solution: The feasible region is the square with vertices (2, 0), (0, 2), (2, 4),
and (4, 2). Note that this square does not contain the origin, which implies
that the initial primal dictionary is not feasible.

c) Write down the (initial) primal dictionary and the corresponding dual
dictionary. Explain that the primal dictionary is not feasible, while the dual
dictionary is.
Solution: The primal dictionary is

η = − x1 − 2x2
w1 = −2 + x1 + x2
w2 = 2 − x1 + x2
w3 = 2 + x1 − x2
w4 = 6 − x1 − x2.

The dual dictionary is obtained by taking the negative transpose:

−ζ = 2y1 − 2y2 − 2y3 − 6y4
z1 = 1 − y1 + y2 − y3 + y4
z2 = 2 − y1 − y2 + y3 + y4

We see that the initial primal dictionary is not feasible (since the constant
in the first constraint is negative), while the initial dual dictionary is (since
both constants in the constraints are positive).

d) Apply the simplex method to the dual problem, and write down the
corresponding optimal dictionary for the primal problem. What are the
optimal solutions to the primal and dual problems? Are they unique?
Solution: In the dual dictionary y1 is the only possible choice for entering
variable. The ratios are 1 and 1/2, so that z1 is leaving. We rewrite
z1 = 1 − y1 + y2 − y3 + y4 as y1 = 1 − z1 + y2 − y3 + y4, and insert this to
obtain

−ζ = 2 − 2z1 − 4y3 − 4y4
y1 = 1 − z1 + y2 − y3 + y4
z2 = 1 + z1 − 2y2 + 2y3

This dictionary is optimal. The corresponding basic solution is y =
(1, 0, 0, 0). It is not unique since we can increase y2 from 0 to 1/2 without
affecting feasibility, and without affecting the objective value. The general
solution to the dual problem is thus

(1 + y2, y2, 0, 0), for 0 ≤ y2 ≤ 1/2.

The corresponding optimal primal dictionary is

η = −2 − w1 − x2
x1 = 2 + w1 − x2
w2 = − w1 + 2x2
w3 = 4 + w1 − 2x2
w4 = 4 − w1

The corresponding basic optimal solution to the primal problem is x = (2, 0).
It is unique.

(Continued on page 3.)
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e) What is the optimal (x1, x2) if the objective in (1) is changed to −x1−x2?
Is the optimal solution unique?
Solution: We rewrite the objective as

−x1 − x2 = −(2 + w1 − x2)− x2 = −2− w1.

The corresponding primal dictionary is thus

η = −2 − w1

x1 = 2 + w1 − x2
w2 = − w1 + 2x2
w3 = 4 + w1 − 2x2
w4 = 4 − w1

which also is optimal. The corresponding basic solution is x = (2, 0). This is
not unique since we can increase x2 without affecting the objective value. We
can’t increase x2 to more than 2, however, in order to maintain feasibility.
The optimal solutions are thus the line segment (2− x2, x2) for 0 ≤ x2 ≤ 2,
i.e., the line segment from (2, 0) to (0, 2).

Problem 2 (Convexity).
What does it mean that a set C ⊆ Rn is convex, and that a function f from
C to R is convex?
Show also that, if f is a convex function, then h(x) = ef(x) is also convex.
Hint: Use that g(x) = ex also is convex (you can use this fact without
proving it).
Solution: A set C is convex if (1 − λ)x + λy ∈ C whenever x ∈ C and
y ∈ C. A function f is convex if f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) for
all x, y ∈ C.
Since f is convex we have that

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y).

Since ex is increasing we have that

ef((1−λ)x+λy) ≤ e(1−λ)f(x)+λf(y).

We now obtain

h((1− λ)x+ λy) = ef((1−λ)x+λy)

≤ e(1−λ)f(x)+λf(y) = g((1− λ)f(x) + λf(y)).

The hint says that g(x) is convex, so that

g((1− λ)f(x) + λf(y)) ≤ (1− λ)g(f(x)) + λg(f(y))

= (1− λ)h(x) + λh(y).

It follows that h is convex.

Problem 3 (Game theory). Consider the matrix game with payoff

matrix A =

(
1 −1
2 1

)
. In the following x denotes a (randomized) strategy

for the column player, y a (randomized) strategy for the row player.

(Continued on page 4.)
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a) This question has two parts:
(i): Assume that the row player chooses strategy y∗ = (1, 0) (i.e., he always
chooses the first item). What is the optimal strategy x for the column
player (in order to maximize payoffs to himself)? What is the corresponding
expected payoff?
Solution: We need to solve

max
x≥0,1T x=1

(
1 0

)(1 −1
2 1

)
x = max

x≥0,1T x=1
x1 − x2.

The maximum is clearly attained for x = (1, 0), with a maximum/expected
payoff of 1.
(ii): Assume that the column player chooses strategy x∗ = (1, 0). What is
the optimal strategy y for the row player (in order to minimize payoffs from
himself)? What is the corresponding expected payoff?
Solution: We need to solve

min
y≥0,1T y=1

yT
(
1 −1
2 1

)(
1
0

)
= min

y≥0,1T y=1
y1 + 2y2.

The minimum is clearly attained for y = (1, 0), with a minimum/expected
payoff of 1.

b) Is it possible for the row player to choose a better strategy than y∗, i.e.,
so that his expected payoff is lower than what you obtained above?
Solution: The strategy y∗ is optimal.
There are several ways to argue for this. One way is to realize this in terms
of pure minmax/maxmin strategies (not in the syllabus).
One can also argue as follows. If the second item is chosen with some
probabiblity y2 > 0, and x always chooses the first item (i.e., x = (1, 0)), the
payoff would be(

y1 y2
)(1 −1

2 1

)(
1
0

)
= y1 + 2y2 = 1 + y2 > 1,

so that y gives higher payoff when compared to y∗ (i.e., is suboptimal).
One may argue in similar ways with the minimax theorem. If a better
strategy y exists, we would have

max
x≥0,1T x=1

yTAx < max
x≥0,1T x=1

(y∗)TAx. (2)

But we have that

1 = min
y≥0,1T y=1

yTAx∗

≤ max
x≥0,1T x=1

min
y≥0,1T y=1

yTAx

= min
y≥0,1T y=1

max
x≥0,1T x=1

yTAx

≤ max
x≥0,1T x=1

(y∗)TAx = 1

where we used a), and where the middle equality was proved in chapter 11.
It follows that all of them are equal, so that

min
y≥0,1T y=1

max
x≥0,1T x=1

yTAx = max
x≥0,1T x=1

(y∗)TAx,

but this contradicts (2).

(Continued on page 5.)
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Problem 4 (Network flow). Consider the minimum cost network flow
problem based on the directed graph shown in the figure below.

ab

c d

210-1

8

2 6 -3

2 2

The number associated with each directed edge is the cost per unit flow, and
the number associated with each node is the supply at that node.

a) Let T1 be the spanning tree consisting of the edges (a, b), (b, c), and (c, d)
(this is indicated in red above). Compute the tree solution corresponding to
T1.
Solution: We apply the flow balance equations at the nodes a, b, and c.

• Flow balance at a gives xab = 2.

• Flow balance at b gives xbc − xab = −1, so that xbc = 1.

• Flow balance at c gives xcd − xbc = 2, so that xcd = 3.

We also have that xdb = xad = 0, since (d, b) and (a, d) are outside T1. Note
that the tree solution we found is (primal) feasible.

b) Use the network simplex method to find an optimal solution and optimal
value for the flow problem.
Solution: Let a be the root node, so that ya = 0. We first find the dual
variables. We apply that yj − yi = cij for each (i, j) ∈ T1:

• (i, j) = (a, b): yb − ya = 10, so that yb = 10.

• (i, j) = (b, c): yc − yb = 8, so that yc = 18.

• (i, j) = (c, d): yd − yc = 6, so that yd = 24.

For the dual slack variables we apply that zij = yi+cij−yj for each (i, j) 6∈ T1:

• (i, j) = (d, b): zdb = yd + cdb − yb = 24 + 2− 10 = 16.

• (i, j) = (a, d): zad = ya + cad − yd = 0 + 2− 24 = −22.

This gives the following graph, where the supplies have beed replaced by dual
variables, and costs have been replaced by flows (for arcs in the spanning
tree) or dual slacks (for arcs outside the spanning tree):

(Continued on page 6.)
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ab

c d

0210

1

18 3 24

16 -22

Since zad < 0 we do not have dual feasibility, and we thus let xad enter the
basis, and increase it by ε. This gives a loop involving the four edges (a, b),
(b, c), (c, d), and (a, d). Due to the directions of the edges and flow balance,
the flow is changed as follows:

x̃ab = xab − ε = 2− ε
x̃bc = xbc − ε = 1− ε
x̃cd = xcd − ε = 3− ε
x̃ad = ε

We see that x̃bc becomes zero first, and that this occurs for ε = 1. xbc thus
leaves the basis. The new spanning tree is thus T2 = {(a, b), (c, d), (a, d)},
and the new tree solution is xab = 1, xcd = 2, xad = 1.
We now update the dual variables by applying yj − yi = cij for each
(i, j) ∈ T2:

• (i, j) = (a, b): yb − ya = 10, so that yb = 10.

• (i, j) = (a, d): yd − ya = 2, so that yd = 2.

• (i, j) = (c, d): yd − yc = 6, so that yc = −4.

For the dual slack variables we apply that zij = yi+cij−yj for each (i, j) 6∈ T2:

• (i, j) = (b, c): zbc = yb + cbc − yc = 10 + 8 + 4 = 22.

• (i, j) = (d, b): zdb = yd + cdb − yb = 2 + 2− 10 = −6.

This gives the following graph, where T2 is coloured in red:

ab

c d

0110

22

-4 2 2

-6 1

(Continued on page 7.)
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Since zdb < 0 we do not have dual feasibility, and we thus let xdb enter the
basis, and increase it by ε. This gives a loop involving the edges (a, b), (a, d),
and (d, b). Due to the directions of the edges and flow balance, the flow is
changed as follows:

x̃ab = xab − ε = 1− ε
x̃ad = xad + ε = 1 + ε

x̃db = ε

We see that x̃ab becomes zero first, and that this occurs for ε = 1. xab thus
leaves the basis. The new spanning tree is thus T3 = {(a, d), (d, b), (c, d)}
((c, d) stays in the spanning tree, it was outside the loop. Its flow does not
change), and the new tree solution is xad = 2, xdb = 1, xcd = 2.
We now update the dual variables by applying yj − yi = cij for each
(i, j) ∈ T3:

• (i, j) = (a, d): yd − ya = 2, so that yd = 2.

• (i, j) = (d, b): yb − yd = 2, so that yb = 4.

• (i, j) = (c, d): yd − yc = 6, so that yc = −4.

For the dual slack variables we apply that zij = yi+cij−yj for each (i, j) 6∈ T3:

• (i, j) = (a, b): zab = ya + cab − yb = 0 + 10− 4 = 6.

• (i, j) = (b, c): zbc = yb + cbc − yc = 4 + 8 + 4 = 16.

This gives the following graph, where T3 is coloured in red:

ab

c d

064

16

-4 2 2

1 2

We see that we now have dual feasibility. The current x is thus optimal, and
the objective value is

cadxad + cdbxdb + ccdxcd = 2 · 2 + 2 · 1 + 6 · 2 = 4 + 2 + 12 = 18.

Good luck!


