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Examination in: MAT3100 — Linear optimization.

Day of examination: Monday 13. June 2022.

Examination hours: 15:00 – 19:00.

This problem set consists of 6 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

All 10 part questions will be weighted equally.

Problem 1 (Simplex method). We will consider the following linear
programming problem.

max x1 + 2x2
s.t. −2x1 + x2 ≤ 0

2x1 − x2 ≤ 4
x2 ≤ 2

x1, x2 ≥ 0

(1)

a) Draw the feasible region of (1).
Solution: The feasible region has corners (0, 0), (2, 0), (3, 2), (1, 2).

b) Write down the dictionary corresponding to (1), and solve the problem
using the simplex method. Write also down the optimal value and optimal
solution.
Solution: The dictionary is

η = x1 + 2x2
w1 = 2x1 − x2
w2 = 4 − 2x1 + x2
w3 = 2 − x2

If we choose x1 as the entering variable, the ratios become −∞, 1/2, and
0, so that w2 leaves. We substitute x1 = 2 − 1

2w2 +
1
2x2, and get the new

dictionary

η = 2 − 1
2w2 + 5

2x2
w1 = 4 − w2

x1 = 2 − 1
2w2 + 1

2x2
w3 = 2 − x2

Now x2 enters, and the ratios are 0, −1/4, and 1/2, so that w3 leaves. We
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substitute x2 = 2− w3, and get the new dictionary

η = 7 − 1
2w2 − 5

2w3

w1 = 4 − w2

x1 = 3 − 1
2w2 − 1

2w3

x2 = 2 − w3

This dictionary is optimal. The optimal value is 7, and x = (3, 2) is the
unique optimal solution.
It is also possible here to let x2 enter in the first pivot (this is the choice
taken by the largest coefficient rule). In this case three pivots will be needed
in total, and the first pivot is degenerate.

c) Write down the dual problem and the optimal dual dictionary. What is
the optimal solution to the dual problem?
Solution: The dual problem is

min 4y2 + 2y3
subject to −2y1 + 2y2 ≥ 1

y1 − y2 + y3 ≥ 2
y1, y2, y3 ≥ 0

The optimal dual dictionary is the negative transpose of the optimal primal
dictionary:

−ζ = −7 − 4y1 − 3z1 − 2z2
y2 = 1

2 + y1 + 1
2z1

y3 = 5
2 + 1

2z1 + z2

Here variables have been replaced with their complementary counterparts.
We see that the optimal objective value is ζ = 7, and we obtain the optimal
dual solution y = (0, 1/2, 5/2). This solution is also unique.

d)What is the optimal solution if the objective in (1) is changed to 6x1−3x2?
Is the optimal solution unique?
Solution: We rewrite the objective as

6x1 − 3x2 = 6

(
3− 1

2
w2 −

1

2
w3

)
− 3(2− w3) = 12− 3w2.

This means that the same pivots as in b) will give the dictionary

η = 12 − 3w2

w1 = 4 − w2

x1 = 3 − 1
2w2 − 1

2w3

x2 = 2 − w3

We see that the dictionary is still optimal, but the solution is not unique
since w3 can be increased from 0 to 2 without violating the constraints. The
optimal solutions are thus the line segment (3−w3/2, 2−w3) for 0 ≤ w3 ≤ 2,
i.e., the line segment from (3, 2) to (2, 0).

Problem 2 (Convexity).

(Continued on page 3.)
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a) Let f : [a, b]→ R be a convex function. Show that

max{f(x) : x ∈ [a, b]} = max{f(a), f(b)}

In other words, show that a convex function defined on an interval on the
real line achieves its maximum in one of the end points of that interval.
Solution: Any x ∈ [a, b] can be written on the form (1− λ)a+ λb for some
0 ≤ λ ≤ 1. From convexity of f it now follows that

f(x) = f((1− λ)a+ λb) ≤ (1− λ)f(a) + λf(b)

≤ (1− λ)max{f(a), f(b)}+ λmax{f(a), f(b)} = max{f(a), f(b)},

so that max{f(x) : x ∈ [a, b]} ≤ max{f(a), f(b)}. Since clearly also
max{f(x) : x ∈ [a, b]} ≥ max{f(a), f(b)} the result follows.

b) Let C ⊆ Rn be a convex set and consider the function dC defined by
dC(x) = inf{‖x− c‖ : c ∈ C} (i.e., the smallest distance from x to C). Show
that dC is a convex function.
Hint: For points x, y, the point (1−λ)x1+λy1 can be useful here, where x1
and y1 are points in C near to achieving the (minimal) distances from x and
y to C.
Solution: Let x, y be given. For any ε ≥ 0 we can find x1, y1 ∈ C so
that ‖x − x1‖ ≤ dC(x) + ε, ‖y − y1‖ ≤ dC(y) + ε. Since C is convex,
(1− λ)x1 + λy1 ∈ C, and we have that

dC((1− λ)x+ λy) = inf{‖(1− λ)x+ λy − c‖ : c ∈ C}
≤ ‖(1− λ)x+ λy − ((1− λ)x1 + λy1)‖
≤ (1− λ)‖x− x1‖+ λ‖y − y1‖
≤ (1− λ)(dC(x) + ε) + λ(dC(y) + ε)

= (1− λ)dC(x) + λdC(y) + ε.

In the first inequality here we inserted c = (1 − λ)x1 + λy1, which is
in C because of convexity. Since this applies for all ε it follows that
dC((1− λ)x+ λy) ≤ (1− λ)dC(x) + λdC(y) as well, so that dC is convex.

Problem 3 (Game theory). Consider the matrix game with payoff
matrix

A =


0 0 1 −1
−1 −2 0 1
2 1 −1 1
1 0 −1 0

 .

In the following x denotes a (randomized) strategy for the column player, y
a (randomized) strategy for the row player.

a) This question has two parts:
(i): Assume that the row player chooses strategy y∗ = (1/2, 1/2, 0, 0) (i.e.,
he chooses the first and second items with equal probability, and never the
two others). What is the optimal strategy x for the column player (in order
to maximize payoffs to himself)? What is the expected payoff?

(Continued on page 4.)
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Solution: We need to solve

max
x≥0,1T x=1

(
1/2 1/2 0 0

)
0 0 1 −1
−1 −2 0 1
2 1 −1 1
1 0 −1 0

x

= max
x≥0,1T x=1

(
−1/2 −1 1/2 0

)
x

= max
x≥0,1T x=1

−x1/2− x2 + x3/2 = 1/2.

The maximum is clearly attained for x = (0, 0, 1, 0) (i.e., the column player
should always choose the third item), and the expected payoff of 1/2.
(ii): Assume that the column player chooses strategy x∗ = (0, 0, 1/2, 1/2)
(i.e., he chooses the third and fourth items with equal probability, and never
the two others). What is the optimal strategy y for the row player (in order
to minimize payoffs from himself)? What is the expected payoff?
Solution: We need to solve

min
y≥0,1T y=1

yT


0 0 1 −1
−1 −2 0 1
2 1 −1 1
1 0 −1 0




0
0

1/2
1/2



= min
y≥0,1T y=1

yT


0

1/2
0
−1/2


= min

y≥0,1T y=1
(y2 − y4)/2 = −1/2.

The minimum is clearly attained for y = (0, 0, 0, 1) (i.e., the row player
should always choose the fourth item), with an expected payoff of −1/2 (i.e.
the payment goes from the column player).

b) Let us instead consider the strategy y∗ = (1/3, 1/3, 0, 1/3) for the row
player, and the strategy x∗ = (1/3, 0, 1/3, 1/3) for the column player. Are
these strategies mutually optimal? If so, what is the value of the game?
Solution: We have that

Ax∗ =


0
0

2/3
0

 (y∗)TA =
(
0 −2/3 0 0

)
.

From this it follows that

max
x≥0,1T x=1

(y∗)TAx = max
x≥0,1T x=1

−2x2/3 = 0

min
y≥0,1T y=1

yTAx∗ = min
y≥0,1T y=1

2y3/3 = 0

Since the two values we obtained are equal, the two strategies are mutually
optimal. The value of the game is 0, so that the game is fair.

(Continued on page 5.)
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Figure 1: Flow problem for Problem 4.

Problem 4 (Network flow). Consider the minimum cost network flow
problem based on the directed graph shown in Figure 1.
The number associated with each directed edge is the cost per unit flow, and
the number associated with each node is the supply at that node.

a) Let T1 be the spanning tree consisting of the edges (a, d), (d, e), (b, e),
(d, f), (f, g), and (f, c) (indicated in bold in the figure). Compute the tree
solution corresponding to T1.
Solution: We apply the flow balance equations at the nodes, starting with
the leafs:

• Flow balance at a gives xad = 4.

• Flow balance at b gives xbe = 1.

• Flow balance at c gives −xfc = −2, so that xfc = 2.

• Flow balance at g gives −xfg = −2, so that xfg = 2.

• Flow balance at e gives −xde − xbe = −2, so that xde = 2 − xbe =
2− 1 = 1.

• Flow balance at d gives xde + xdf − xad = 0, so that xdf = xad − xde =
4− 1 = 3.

We also have that xca = xdg = 0, since (c, a) and (d, g) are outside T1. The
tree solution we found is (primal) feasible.

b) Use the network simplex method to find an optimal solution and optimal
value for the flow problem.
Solution: Let a be the root node, so that ya = 0. We first find the dual
variables. We apply that yj − yi = cij for each (i, j) ∈ T1:

• (i, j) = (a, d): yd − ya = 6, so that yd = 6.

• (i, j) = (d, e): ye − yd = 2, so that ye = 8.

• (i, j) = (b, e): ye − yb = 3, so that yb = 5.

(Continued on page 6.)
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• (i, j) = (d, f): yf − yd = 1, so that yf = 7.

• (i, j) = (f, c): yc − yf = 3, so that yc = 10.

• (i, j) = (f, g): yg − yf = 2, so that yg = 9.

For the dual slack variables we apply that yj−yi+zij = cij for each (i, j) 6∈ T1:

• (i, j) = (c, a): ya − yc + zca = cca, so that 0 − 10 + zca = 4, so that
zca = 14.

• (i, j) = (d, g): yg − yd + zdg = cdg, so that 9 − 6 + zdg = 1, so that
zdg = −2.

Since zdg < 0 we do not have dual feasibility, and we thus let xdg enter the
basis, and increase it by ε. This gives a loop involving the three edges (d, f),
(f, g), and (d, g). Due to the directions of the edges and flow balance, the
flow is changed as follows:

x̃dg = ε

x̃df = xdf − ε = 3− ε
x̃fg = xfg − ε = 2− ε

We see that x̃fg becomes zero first, and that this occurs for ε = 2. xfg thus
leaves the basis. The new spanning tree is thus

T2 = {(a, d), (d, e), (b, e), (d, f), (d, g), (f, c)}.

The only changes for the new tree solution are xdg = 2, xdf = 1, xfg = 0
(the flow can only change in the cycle introduced by the entering arc).
yg is the only dual variable that changes (when the leaving arc is removed,
the tree has two disconnected components, and only dual variables for the
part not containing the root node can change), and we get yg − yd = cdg, so
that yg = 6 + 1 = 7.
The dual slack zca does not change (since the dual variables of its terminal
nodes did not change). Only zfg can change, and we get yg−yf + zfg = cfg,
so that 7− 7 + zfg = 2, so that zfg = 2. We thus have dual feasibility, and
hence optimality. The optimal objective value is

cadxad + cdexde + cbexbe + cdfxdf + cdgxdg + cfcxfc

= 6 · 4 + 2 · 1 + 3 · 1 + 1 · 1 + 1 · 2 + 3 · 2
= 24 + 2 + 3 + 1 + 2 + 6 = 38.

Good luck!


