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Faculty of Mathematics and Natural

Sciences

Examination in: MAT3100 — Linear optimization.

Day of examination: Monday 12. June 2023.

Examination hours: 15:00 – 19:00.

This problem set consists of 7 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

All 10 part questions will be weighted equally.

Problem 1 (Simplex method). We will consider the following linear
programming problem.

max x1 + 2x2 + 3x3
s.t. x1 + x2 + x3 ≤ 2

x1 ≤ 1
x2 ≤ 1

x3 ≤ 1
x1, x2, x3 ≥ 0

(1)

a) Write down the dictionary corresponding to (1), and solve the problem
using the simplex method and the largest coefficient rule. Write also down
the optimal value and optimal solution. Is the optimal solution unique?
Solution: The dictionary is

η = x1 + 2x2 + 3x3
w1 = 2 − x1 − x2 − x3
w2 = 1 − x1
w3 = 1 − x2
w4 = 1 − x3

According to the largest coefficient rule, x3 is the entering variable. The
ratios are 1/2, 0, 0, and 1. The biggest is 1, so that w4 is the leaving
variable. Substituting x3 = 1− w4 we get

η = 3 + x1 + 2x2 − 3w4

w1 = 1 − x1 − x2 + w4

w2 = 1 − x1
w3 = 1 − x2
x3 = 1 − w4

(Continued on page 2.)



Examination in MAT3100, Monday 12. June 2023. Page 2

x2 is now the entering variable. The ratios are now 1, 0, 1, and 0. Either w1

or w3 can thus leave the basis. If we choose w1 as the leaving variable we
get

η = 5 − x1 − 2w1 − w4

x2 = 1 − x1 − w1 + w4

w2 = 1 − x1
w3 = x1 + w1 − w4

x3 = 1 − w4

This dictionary is optimal, with optimal value 5, and (x1, x2, x3) = (0, 1, 1)
as the unique optimizer.
If we instead choose w3 as the leaving variable we get

η = 5 + x1 − 2w3 − 3w4

w1 = − x1 + w3 + w4

w2 = 1 − x1
x2 = 1 − w3

x3 = 1 − w4

We now need another pivot, with x1 as entering variable. The ratios are now
∞, 1, 0, and 0, so that the leaving variable is w1. We now obtain

η = 5 − w1 − w3 − 2w4

x1 = − w1 + w3 + w4

w2 = 1 + w1 − w3 − w4

x2 = 1 − w3

x3 = 1 − w4

This dictionary is optimal, and we get the same optimal value and unique
optimizer as above.

b) Write down the dual problem and the optimal dual dictionary. What is
the optimal solution to the dual problem? Is this solution unique?
Solution: The dual problem is

min 2y1 + y2 + y3 + y4
subject to y1 + y2 ≥ 1

y1 + y3 ≥ 2
y1 + y4 ≥ 3

y1, y2, y3, y4 ≥ 0

The optimal dual dictionary (if w1 was chosen to leave the basis in the second
pivot in a)) is the negative transpose of the optimal primal dictionary:

−ζ = −5 − z2 − y2 − z3
z1 = 1 + z2 + y2 − y3
y1 = 2 + z2 − y3
y4 = 1 − z2 + y3 + z3

Here variables have been replaced with their complementary counterparts.
We see that the optimal objective value is ζ = 5, and we obtain the optimal
solution y = (2, 0, 0, 1). This solution is not unique, however, since we can
increase y3 and remain at the optimal value. The first constraint says that

(Continued on page 3.)
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we can increase y3 to 1, the second constraint says that we can increase y3 to
2, and the third constraint says that we can increase y3 to infinity. We can
thus increase y3 to 1, so that the general solution is y = (2−y3, 0, y3, 1+y3),
where 0 ≤ y3 ≤ 1.

c) What is the optimal solution if the objective in (1) is changed to
x1 + x2 + 3x3? Is the optimal solution unique?
Solution: Using the optimal dictionary from a) we rewrite the objective as

x1 + x2 + 3x3 = x1 + (1− x1 − w1 + w4) + 3(1− w4) = 4− w1 − 2w4

This means that the same pivots as in a) will give an optimal dictionary for
this objective as well. The optimal value is 4, but the optimiser is not unique
in this case, since the nonbasic variable x1 is not present in the objective.
One sees from the optimal primal dictionary that x1 can be increased to 1,
so that the general optimiser is (x1, x2, x3) = (x1, 1− x1, 1) for 0 ≤ x1 ≤ 1.

d) How is an extreme point of a convex set defined? What are the extreme
points of the feasible region of the problem (1)?
Solution: Denote the convex set by C. A point x ∈ C is an extreme point if,
whenever x can be written as a convex combination of two points x1, x2 ∈ C
(i.e., x = (1− λ)x1 + λx2), we must have that x = x1 = x2.
If you recall exercise 16 in "a mini-introduction to convexity", you know
immediately that the extreme points are the seven points with coordinates
being 0 or 1, with the exception of (1, 1, 1). That these seven points actually
are extreme points is easy to show, since if xi is 0 or 1, component i can’t
be both increased and decreased (as we would need when writing x as a
convex combination of two other points) and remain feasible. We also need
to prove that a point x with a non-integer component can’t possibly be an
extreme point. This can be split in two cases, where we assume without loss
of generality that x1 is not an integer:

1. Assume that x1 + x2 + x3 < 2. Write

x =
1

2
(x1 − ε, x2, x3) +

1

2
(x2 + ε, x2, x3).

It is clear that for small enough ε the sum of the components is still
< 2, and still between 0 and 1, so that the points involved are feasible.
It follows that x is not an extreme point.

2. Assume that x1 + x2 + x3 = 2. Since x1 is non-integer, one of x2 or x3
must also be non-integer. Assume that x2 is. Write

x =
1

2
(x1 − ε, x2 + ε, x3) +

1

2
(x1 + ε, x2 − ε, x3).

For small enough ε, the two points involved here will still have
coordinates between 0 and 1, and the coordinates still sum to 2, so
the points are feasible. It follows that x is not an extreme point.

You can also prove this by considering all possible subsets of 4 columns which
give an invertible submatrix B. This will required a lot of computation,
though.

(Continued on page 4.)
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Problem 2 (Convexity).

a) Let f be an increasing and convex function, and let g be another convex
function. Show that h(x) = f(g(x)) is a convex function.
Solution: Since g is convex, g((1− λ)x+ λy) ≤ (1− λ)g(x) + λg(y). Since
f is increasing we have

f(g((1− λ)x+ λy)) ≤ f((1− λ)g(x) + λg(y)) ≤ (1− λ)f(g(x)) + λf(g(y)),

where we in the second inequality used that f also is convex. It follows that

h((1− λ)x+ λy) ≤ (1− λ)h(x) + λh(y),

so that h also is convex.

b) Let f : R → R be a convex function, and let S = {(x, y) : f(x) ≤ y}.
Prove that S is a convex set.
Solution: Assume that (x1, y1), (x2, y2) ∈ S, so that f(x1) ≤ y1, f(x2) ≤ y2.
We need to show that

(1− λ)(x1, y1) + λ(x2, y2) = ((1− λ)x1 + λx2, (1− λ)y1 + λy2) ∈ S

as well. But this is equivalent to f((1− λ)x1 + λx2) ≤ (1− λ)y1 + λy2. But
this holds because of convexity of f :

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2) ≤ (1− λ)y1 + λy2,

where we used that f(x1) ≤ y1, f(x2) ≤ y2.

Problem 3 (Game theory). Consider the matrix game with payoff
matrix

A =

1 2 1
3 0 1
2 0 2

 .

a) Does the matrix A have a saddle point? What does this say about the
possibility of having pure strategies which are optimal?
Solution: A saddle point should be the biggest in the row it is in, and the
smallest in the column it is in. We go through all possible rows:

• If the saddle point is in the first row, it must be the (1, 2)-entry (the
2). But this is not the smallest in that column, so this possibility can
be discarded.

• If the saddle point is in the second row, it must be the (2, 1)-entry (the
3). But this is not the smallest in that column, so this possibility can
be discarded.

• If the saddle point is in the third row, it must be either the (3, 1)-
or (3, 3)-entry (a 2). But these are not the smallest in the respective
columns, so this possibility can also be discarded.

Thus, there does not exist a saddle point. This means that there are no
pure minmax/maxmin strategies, i.e., no optimal pure strategies (where one
always bets on a given item) exist.

(Continued on page 5.)
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Figure 1: Flow problem for Problem 4.

b) This question has three parts.
(i) Assume that the row player chooses strategy y∗ = (2/3, 0, 1/3). Show that
the expected payoff (y∗)TAx is the same, regardless of the column player’s
strategy x. What is the expected payoff?
(ii) Assume that the column player chooses the strategy x∗ = (1/3, 1/3, 1/3).
Show that the expected payoff yTAx∗ is the same regardless of the row
player’s strategy y. What is the expected payoff?
(iii) What does the minimax theorem for matrix games say? Are the two
strategies x∗ and y∗ mutually optimal? If so, what is the value of the game?
Is the game fair?
Solution: We have that

Ax∗ =

4/3
4/3
4/3

 (y∗)TA =
(
4/3 4/3 4/3

)
.

From this it follows that (since x and y are stochastic)

(y∗)TAx =
4

3
(x1 + x2 + x3) =

4

3

yTAx∗ =
4

3
(y1 + y2 + y3) =

4

3

so that the expected payoffs are also 4/3, for any x and y. Thus
miny y

TAx∗ = maxx(y
∗)TAx = 4/3, where we maximise/minimise over all

stochastic vectors.
The minimax theorem for matrix games says that there exist stochastic
vectors x∗, y∗ so that miny y

TAx∗ = maxx(y
∗)TAx (where we again

maximise/minimise over stochastic vectors). We have also learnt that any
x∗, y∗ satisfying this are mutually optimal. By the minimax theorem, x∗ and
y∗ as defined above are thus mutually optimal (the common value is 4/3),
and the value of the game is 4/3. Since this in nonzero, the game is not fair.

Problem 4 (Network flow). Consider the minimum cost network flow
problem based on the directed graph shown in Figure 1.
The number associated with each directed edge is the cost per unit flow, and
the number associated with each node is the supply at that node.

(Continued on page 6.)
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a) Let T1 be the spanning tree consisting of the edges (a, b), (a, c), and (b, d)
(indicated in bold in the figure). Compute the tree solution corresponding
to T1.
Solution: We apply the flow balance equations at the nodes, starting with
the the two leafs:

• Flow balance at c gives −xac = −2, so that xac = 2.

• Flow balance at d gives −xbd = −1, so that xbd = 1.

• Flow balance at a gives xab + xac = 6, so that xab = 6− xac = 4.

We also have that xcd = xad = xda = 0, since these are outside T1. The tree
solution we found is (primal) feasible.

b) Use the network simplex method to find an optimal solution and optimal
value for the flow problem.
Solution: Let a be the root node, so that ya = 0. We first find the dual
variables. We apply that yj − yi = cij for each (i, j) ∈ T1:

• (i, j) = (a, c): yc − ya = 1, so that yc = 1.

• (i, j) = (a, b): yb − ya = 2, so that yb = 2.

• (i, j) = (b, d): yd − yb = 3, so that yd = yb + 3 = 5.

For the dual slack variables we apply that yj−yi+zij = cij for each (i, j) 6∈ T1:

• (i, j) = (c, d): yd − yc + zcd = ccd, so that 5 − 1 + zcd = 2, so that
zcd = −2.

• (i, j) = (a, d): yd − ya + zad = cad, so that 5 − 0 + zad = 2, so that
zad = −3.

• (i, j) = (d, a): ya − yd + zda = cda, so that 0 − 5 + zda = 1, so that
zda = 6.

Since some of these are negative we do not have dual feasibility. According
to the largest coefficient rule we should let xad enter, and increase it by ε.
This gives a loop involving the three edges (a, b), (b, d), and (a, d). Due to
the directions of the edges and flow balance, the flow is changed as follows:

x̃ab = xab − ε = 4− ε
x̃bd = xbd − ε = 1− ε
x̃ad = ε

We see that x̃bd becomes zero first, and that this occurs for ε = 1. xbd thus
leaves the basis. The new spanning tree is thus

T2 = {(a, b), (a, c), (a, d)}.

The only changes for the new tree solution are xab = 3, xad = 1, xbd = 0
(the flow can only change in the cycle introduced by the entering arc. In
particular, xac = 2 still).

(Continued on page 7.)
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yd is the only dual variable that changes (when the leaving arc is removed,
the tree has two disconnected components, and only dual variables for the
part not containing the root node can change), and we get yd − ya = cad, so
that yd = 0 + 2 = 2.
The dual slacks for edges not in T2 can be computed as follows:

• (i, j) = (b, d): yd − yb + zbd = cbd, so that 2 − 2 + zbd = 3, so that
zbd = 3.

• (i, j) = (c, d): yd − yc + zcd = ccd, so that 2 − 1 + zcd = 2, so that
zcd = 1.

• (i, j) = (d, a): ya − yd + zda = cda, so that 0 − 2 + zda = 1, so that
zda = 3.

We thus have dual feasibility, and hence optimality. The optimal objective
value is

cabxab + cacxac + cadxad

= 2 · 3 + 1 · 2 + 2 · 1
= 6 + 2 + 2 = 10.

Good luck!


