UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT 3370 - Linear optimization
Day of examination: May 31., 2011
Examination hours: 09.00-13.00
This problem set consists of 3 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

There are 10 questions each with roughly the same weight.

Problem 1

Consider the LP problem:

$$
\begin{array}{lrl}
\max & x_{1}-2 x_{2}+x_{3} \\
\text { subject to } \\
& x_{1}+2 x_{2}+x_{3} \leq 12 \\
2 x_{1}+x_{2}-x_{3} \leq 6 \tag{1}\\
-x_{1}+3 x_{2} & \leq 9 \\
x_{1}, x_{2}, x_{3} \geq 0 .
\end{array}
$$

1a

Solve problem (1) using the simplex algorithm with initial point $x=(0,0,0)$. Find an optimal solution, including values on the slack variables, and the optimal value.

1b

Find the dual problem of (1). Moreover, find an optimal solution of the dual, including dual slacks, preferable without any computations.

Let $a \leq 0$ be a parameter (number) and define the function $f_{a}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $f_{a}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+a x_{2}+x_{3}$. Let (P) denote the problem obtained from the LP problem (1) by replacing the objective function by $f_{a}\left(x_{1}, x_{2}, x_{3}\right)$, but using the same constraints.

1c

Find an x^{*} which is optimal in (P) for all $a \leq 0$, and show that it is optimal.

Problem 2

Consider the LP problem:

$$
\begin{array}{lc}
\max & -x_{1}-x_{2}-x_{3} \\
\text { subject to } \\
x_{1}+2 x_{2}+x_{3} \leq 12 \tag{2}\\
2 x_{1}+x_{2}-x_{3} \leq-6 \\
x_{1}, x_{2}, x_{3} \geq 0 .
\end{array}
$$

$2 a$

Use the dual simplex method to find a feasible solution in (2). (If you don't remember this method, you may also get some (but not full) score using another method.) Is there a basic feasible solution in (2) where x_{3} is not a basic variable (i.e., x_{3} is not in the basis)? Give reasons for your answer.

Problem 3

Let $a \in \mathbb{R}^{n}$ where $\|a\|=\sqrt{a^{T} a}=1$, and let $b_{1}, b_{2} \in \mathbb{R}$ with $b_{1}<b_{2}$. Define $H_{1}=\left\{x \in \mathbb{R}^{n}: a^{T} x=b_{1}\right\}$ and $H_{2}=\left\{x \in \mathbb{R}^{n}: a^{T} x=b_{2}\right\}$.

3a

Determine the convex hull of $H_{1} \cup H_{2}$ (with proof).

Problem 4

Consider the LP problem

$$
\begin{array}{lc}
\max & c^{T} x \\
\text { subject to } & A x=b \\
& O \leq x \leq h
\end{array}
$$

Here $c, h \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$ and the $m \times n$ matrix A are given, and O denotes the zero vector.

4a

Find the dual of problem (2).

Consider the linear system

$$
\begin{align*}
& \sum_{j=1}^{n} x_{j} \leq 1 \tag{4}\\
& O \leq x_{j} \leq h_{j} \quad(j \leq n)
\end{align*}
$$

where each h_{j} is (strictly) positive. (Note: there are only inequalities.)

4b

Use Fourier-Motzkin elimination to eliminate x_{1} in (4). Then go on and eliminate x_{2}, x_{3} etc.; explain how x_{k} depends on x_{k+1}, \ldots, x_{n} in a general solution of (4).

Problem 5

Consider the following minimum cost network flow problem. Define the directed graph $D=(V, E)$ where $V=\left\{v_{1}, v_{2}, \ldots, v_{5}\right\}$ (the nodes) and E (the edges=arcs) consists of $\left(v_{i}, v_{i+1}\right)$ for $1 \leq i \leq 4$ and the edge (v_{2}, v_{4}). So D has 5 edges. Define the supply vector b by $b_{v_{1}}=1, b_{v_{5}}=-1$ and $b_{v_{i}}=0$ for $i=2,3,4$. Finally, define the $\operatorname{cost} c_{e}=1$ for every edge e.

$5 a$

Draw the graph. Find all spanning trees in D (for each, give its edges). Let T_{1} be the spanning tree which does not contain $\left(v_{3}, v_{4}\right)$, and compute the corresponding tree solution x^{*}.

5b

Compute the dual solution (y, z) corresponding to the spanning tree T_{1} above: let here $y_{v_{1}}=0$ (so v_{1} is the root). Explain why x^{*} above is an optimal solution of the minimum cost network flow problem.

Let A be the node-arc (node-edge) incidence matrix of the graph D above.

5c

Let r be the maximum rank of a square submatrix of A. Find r and a submatrix B of A such that B has rank r. Explain your answer with reference to general theory.

Good luck!

