
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Examination in INF-MAT 3370 — Linear optimization

Day of examination: May 31., 2011

Examination hours: 09.00 – 13.00

This problem set consists of 3 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

There are 10 questions each with roughly the same weight.

Problem 1
Consider the LP problem:

max x1 − 2x2 + x3

subject to
x1 + 2x2 + x3 ≤ 12

2x1 + x2 − x3 ≤ 6

−x1 + 3x2 ≤ 9

x1, x2, x3 ≥ 0.

(1)

1a

Solve problem (1) using the simplex algorithm with initial point x = (0, 0, 0).
Find an optimal solution, including values on the slack variables, and the op-
timal value.

1b

Find the dual problem of (1). Moreover, find an optimal solution of the dual,
including dual slacks, preferable without any computations.

Let a ≤ 0 be a parameter (number) and define the function fa : R3 → R
by fa(x1, x2, x3) = x1 + ax2 + x3. Let (P) denote the problem obtained from
the LP problem (1) by replacing the objective function by fa(x1, x2, x3), but
using the same constraints.

(Continued on page 2.)
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1c

Find an x∗ which is optimal in (P) for all a ≤ 0, and show that it is optimal.

Problem 2
Consider the LP problem:

max −x1 − x2 − x3

subject to
x1 + 2x2 + x3 ≤ 12

2x1 + x2 − x3 ≤ −6

x1, x2, x3 ≥ 0.

(2)

2a

Use the dual simplex method to find a feasible solution in (2). (If you don’t
remember this method, you may also get some (but not full) score using
another method.) Is there a basic feasible solution in (2) where x3 is not a
basic variable (i.e., x3 is not in the basis)? Give reasons for your answer.

Problem 3
Let a ∈ Rn where ‖a‖ =

√
aT a = 1, and let b1, b2 ∈ R with b1 < b2. Define

H1 = {x ∈ Rn : aT x = b1} and H2 = {x ∈ Rn : aT x = b2}.

3a

Determine the convex hull of H1 ∪H2 (with proof).

Problem 4
Consider the LP problem

max cT x
subject to

Ax = b

O ≤ x ≤ h

(3)

Here c, h ∈ Rn, b ∈ Rm and the m × n matrix A are given, and O denotes
the zero vector.

(Continued on page 3.)
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4a

Find the dual of problem (2).

Consider the linear system∑n
j=1 xj ≤ 1

O ≤ xj ≤ hj (j ≤ n)
(4)

where each hj is (strictly) positive. (Note: there are only inequalities.)

4b

Use Fourier-Motzkin elimination to eliminate x1 in (4). Then go on and
eliminate x2, x3 etc.; explain how xk depends on xk+1, . . . , xn in a general
solution of (4).

Problem 5
Consider the following minimum cost network flow problem. Define the
directed graph D = (V, E) where V = {v1, v2, . . . , v5} (the nodes) and E
(the edges=arcs) consists of (vi, vi+1) for 1 ≤ i ≤ 4 and the edge (v2, v4). So
D has 5 edges. Define the supply vector b by bv1 = 1, bv5 = −1 and bvi

= 0
for i = 2, 3, 4. Finally, define the cost ce = 1 for every edge e.

5a

Draw the graph. Find all spanning trees in D (for each, give its edges). Let
T1 be the spanning tree which does not contain (v3, v4), and compute the
corresponding tree solution x∗.

5b

Compute the dual solution (y, z) corresponding to the spanning tree T1 above:
let here yv1 = 0 (so v1 is the root). Explain why x∗ above is an optimal
solution of the minimum cost network flow problem.

Let A be the node-arc (node-edge) incidence matrix of the graph D above.

5c

Let r be the maximum rank of a square submatrix of A. Find r and a
submatrix B of A such that B has rank r. Explain your answer with reference
to general theory.

Good luck!


