UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT 3370 — Linear optimization
Day of examination: May 31., 2011

Examination hours:  09.00-13.00

This problem set consists of 6 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

There are 10 questions each with roughly the same weight.

Problem 1
Consider the LP problem:
max T, — 29 + w3
subject to
1 + 2x9 4+ w3 < 12
21’1 + To — X3 S 6 (1)
—-r1 + 3.1'2 < 9

x1, T, x3 2 0.

la

Solve problem (1) using the simplex algorithm with initial point 2 = (0, 0, 0).
Find an optimal solution, including values on the slack variables, and the op-
timal value.

Solution:
C = 0 + ry — 2I2 + 3
w, = 12 — ry — 21’2 — I3
Wy = 6 — 21’1 — To + I3
ws = 9 + 11 — 319

Pivot: x5 in and wy out:
C = 12 — 41}2 — w1
r3 = 12 — ry — QZUQ — W
Wy = 18 — 3%1 — 31}2 — W
w3y = 9 -+ rr — 3I2

(Continued on page 2.)
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Optimal solution: 1 = x5 =0, x3 = 12 and w; =0, wy = 18, w3 =9.);
optimal value is 12.

1b

Find the dual problem of (1). Moreover, find an optimal solution of the dual,
including dual slacks, preferable without any computations.

Solution: The dual is

min 12y7 + 6y2 + 9ys
subject to
v+ 2y — yz =21
2y1 + Y2 + 3yz = -2
Yo=Y > 1
Y1,Y2,y3 = 0.

From the optimal dictionary in the previous question we see that an optimal
solution in the dual is y; =1, yo =0, y3 = 0 and dual slacks z;1 =0, z5 = 4,
23 = 0.

Let a < 0 be a parameter (number) and define the function f, : R* — R
by fa(x1, 22, 23) = 1 + axe + x3. Let (P) denote the problem obtained from
the LP problem (1) by replacing the objective function by f,(x1, 22, x3), but
using the same constraints.

1c

Find an z* which is optimal in (P) for all @ < 0, and show that it is optimal.

Solution: z* = (0,0,12) (found in a)) is optimal in (P), and the optimal
value is 12. Proof: The solution x*is feasible (shown before), and f,(z*) = 12.
Moreover, by adding the constraint xy + 2x9 + 23 < 12 and a — 2 (which is
negative) times the constraint xo > 0 we get x1 + 2x9 + x3 + (@ — 2)zy <
12+ 0=12. So

folz) =21 + axg + x5 < 12

Thus each feasible solution in (P) must satisfy this constraint. This implies
that x* 1s optimal.

Alternative: use simplex algorithm with the same pivots as in a) and note
that the same solution is optimal (using that a <0).

(Continued on page 3.)
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Problem 2
Consider the LP problem:
max —ry — Ty — I3
subject to
T + QZEQ + 3 S 12 (2)
2:61 + To — XT3 S —6

T1,22,T3 Z 0.

2a

Use the dual simplex method to find a feasible solution in (2). (If you don’t
remember this method, you may also get some (but not full) score using
another method.) Is there a basic feasible solution in (2) where z3 is not a
basic variable (i.e., x3 is not in the basis)? Give reasons for your answer.

Solution:
¢ = 0 — &1 — x — a3
w, = 12 — x; — 2z — 3
Wy = —6 — 2.771 — To -+ X3

Pivot: wo out of basis and xs in which gives:

C = —6 — 3[E1 — 2[132 — W2
w, = 6 — 31‘1 — 3[L‘2 — W2
rs = 6 —+ 2.2131 + To + Wq

Soxy=129=0, 23 =06 (and wy =6, wy =0) is a feasible solution.
Second question: No. Because if x3 is nonbasic variable it is zero, and
then the the second equation becomes

—6:21}1—|—$2—$3+UJ2:2$1+$2+WQ

Since all variables are nonnegative, 2x1 + x5 + wo > 0 and it cannot be equal
to —6. So, x3 must be in the basis for each basic feasible solution.

Problem 3
Let a € R™ where ||a|| = VaTa = 1, and let by, by € R with b; < by. Define
Hy={reR":a’z=b} and Hy = {x € R" : aTx = by }.

3a
Determine the convex hull of H; U Hy (with proof).

Solution: Define C = {x € R™ : by < aTx < by}. We claim that
conv(Hy U Hy) = C. First, C' is a polyhedron and therefore convex, and it

(Continued on page 4.)
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contains HyUHy. This implies that conv(H;UHy) C C. Next, if xg € C then
by < alxy < by. Consider x' = xg— (aTxg—by)a and 22 = 2o+ (b — a’ x¢)a.
Then x' € Hy, x* € Hy (by computing the inner products) and xq is clearly
on the line segment between x' and x2. Therefore xo € conv(H, U Hy). This
proves that conv(Hy; U Hy) O C, and therefore these two sets are equal.

Problem 4

Consider the LP problem

max c'x
subject to
Ar=1b (3)
O<xz<h

Here ¢,h € R", b € R™ and the m x n matrix A are given, and O denotes
the zero vector.

4a
Find the dual of problem (3).

Solution: Problem (2) may be written

A b
max{ch A e | =b |, x>0}
I h

so the dual is (with variables y1,y2 € R™ and z € R™):

n
min{bTy1 — by +hTz: [ AT —AT ] } y2 | > ¢ y1,y2,2 > O}
z

or
min{b” (y1 — y2) + h7z 1 AT(y1 — o) + 2 > ¢, 1,4, 2 > O}

By replacing 1, — yo by y, the dual is equivalent to

min{b’y +h'z: ATy + 2> ¢, y free, 2 > O}

Consider the linear system

Z?lejﬁl
O<z;<h; (j<n)

where each h; is (strictly) positive. (Note: there are only inequalities.)

(Continued on page 5.)
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4b
Use Fourier-Motzkin elimination to eliminate x; in (4). Then go on and
eliminate x5, z3 etc.; explain how x; depends on zj.1,...,7, in a general

solution of (4).

Solution: Eliminate x1: From 0 < z; and x; < h; and 2?:1 r; <1 we
get 0 < xy <min{hy, 1 = Y7, x5} and the new (projected) system

D2y <1

We repeat the process, and it is easy to show by induction that when x;_y s
eliminated (for some k) we get 0 < ), < min{hg, 1 —>77,  x;} and the
new (projected) system

Dk %y <1
O<uz;<h; (k+1<j<n)

Problem 5

Consider the following minimum cost network flow problem. Define the
directed graph D = (V, E) where V' = {vy,v2,...,v5} (the nodes) and E
(the edges=arcs) consists of (v, v;41) for 1 <7 <4 and the edge (ve,v4). So
D has 5 edges. Define the supply vector b by b,, =1, b,., = —1 and b,, =0
for i = 2,3,4. Finally, define the cost ¢, = 1 for every edge e.

5a

Draw the graph. Find all spanning trees in D (for each, give its edges). Let
T1 be the spanning tree which does not contain (vs,v4), and compute the
corresponding tree solution x*.

Solution: (Draw e.g. along a line.) There are 3 Spanning trees:
E N\ {(vs,va)}, B\ {(v2,03)} and E \ {(vz,va)}.  Computing z* by leaf
elimination: T,,,, = 0 and x,,,, = 0 while . = 1 for all other edges e.
(The solution corresponds to a shortest vyvs-path.)

5b

Compute the dual solution (y, z) corresponding to the spanning tree 7} above:
let here y,, = 0 (so v; is the root). Explain why z* above is an optimal
solution of the minimum cost network flow problem.

Solution: Computing y: use y, — Yy = Cyup for each edge in the tree. This

ges: Yy, = 0, Yo, = 1, Yps = Yo, = 2 and y,, = 3. Computing z: use
Zuw = Yu+ Cuv — Yo for each edge (u,v) not in the tree (the other z’s are zero):

(Continued on page 6.)
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This gives 2y, = 2+1—2=12> 0. So z > O and the present basis is
optimal (by the network simplex algorithm); so x* is optimal.

Let A be the node-arc (node-edge) incidence matrix of the graph D above.

5c

Let r be the maximum rank of a square submatrix of A. Find r and a
submatrix B of A such that B has rank r. Explain your answer with reference
to general theory.

Solution: Since D is connected A has rank equal to |V| —1 = 4 (by
Proposition in lecture notes, or Theorem 14.1 in Vanderbei). Therefore each
square submatriz has rank < 4. By Theorem 14.1 such a submatriz B has
rank 4 if and only if its columns correspond to the edges of a spanning tree.
Therefore r = 4. So if we use the spanning tree Ty, and order nodes/edges
according to tree elimination, we get a submatriz B with rows corresponding
to (e.g.) vs,v4,v3,v2 and columns corresponding to (vy,vs), (ve,vs), (v, v3),
(v1,v2), (in this order). Then

OO ==
—_ 0 = O
—_ -0 O
_ o O O

which is unit upper triangular and invertible (nonsingular) so it has rank 4.



