UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in	INF-MAT 3370 — Linear optimization					
Day of examination:	May 31., 2011					
Examination hours:	09.00-13.00					
This problem set cons	sists of 6 pages.					
Appendices:	None					
Permitted aids:	None					

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

There are 10 questions each with roughly the same weight.

Problem 1

Consider the LP problem:

1a

Solve problem (1) using the simplex algorithm with initial point x = (0, 0, 0). Find an optimal solution, including values on the slack variables, and the optimal value.

Solution:

ζ	=	0	+	x_1	—	$2x_2$	+	x_3
w_1	=	12	_	x_1	_	$2x_2$	_	x_3
w_2	=	6	—	$2x_1$	—	x_2	+	x_3
w_3	=	9	+	x_1	—	$3x_2$		

Pivot: x_3 *in and* w_1 *out:*

ζ	=	12			_	$4x_2$	_	w_1
x_3	=	12	_	x_1	_	$2x_2$	_	w_1
w_2	=	18	—	$3x_1$	—	$3x_2$	—	w_1
w_3	=	9	+	x_1	—	$3x_2$		

(Continued on page 2.)

Optimal solution: $x_1 = x_2 = 0$, $x_3 = 12$ and $w_1 = 0$, $w_2 = 18$, $w_3 = 9$.); optimal value is 12.

1b

Find the dual problem of (1). Moreover, find an optimal solution of the dual, including dual slacks, preferable without any computations.

Solution: The dual is

min subject to $12y_1 + 6y_2 + 9y_3$ $y_1 + 2y_2 - y_3 \ge 1$ $2y_1 + y_2 + 3y_3 \ge -2$ $y_1 - y_2 \ge 1$ $y_1, y_2, y_3 \ge 0.$

From the optimal dictionary in the previous question we see that an optimal solution in the dual is $y_1 = 1$, $y_2 = 0$, $y_3 = 0$ and dual slacks $z_1 = 0$, $z_2 = 4$, $z_3 = 0$.

Let $a \leq 0$ be a parameter (number) and define the function $f_a : \mathbb{R}^3 \to \mathbb{R}$ by $f_a(x_1, x_2, x_3) = x_1 + ax_2 + x_3$. Let (P) denote the problem obtained from the LP problem (1) by replacing the objective function by $f_a(x_1, x_2, x_3)$, but using the same constraints.

1c

Find an x^* which is optimal in (P) for all $a \leq 0$, and show that it is optimal.

Solution: $x^* = (0, 0, 12)$ (found in a)) is optimal in (P), and the optimal value is 12. Proof: The solution x^* is feasible (shown before), and $f_a(x^*) = 12$. Moreover, by adding the constraint $x_1 + 2x_2 + x_3 \leq 12$ and a - 2 (which is negative) times the constraint $x_2 \geq 0$ we get $x_1 + 2x_2 + x_3 + (a - 2)x_2 \leq 12 + 0 = 12$. So

$$f_a(x) = x_1 + ax_2 + x_3 \le 12$$

Thus each feasible solution in (P) must satisfy this constraint. This implies that x^* is optimal.

Alternative: use simplex algorithm with the same pivots as in a) and note that the same solution is optimal (using that $a \leq 0$).

Problem 2

Consider the LP problem:

2a

Use the dual simplex method to find a feasible solution in (2). (If you don't remember this method, you may also get some (but not full) score using another method.) Is there a basic feasible solution in (2) where x_3 is not a basic variable (i.e., x_3 is not in the basis)? Give reasons for your answer.

Solution:

ζ	=	0	—	x_1	—	x_2	—	x_3
w_1	=	12	_	x_1	_	$2x_2$	_	x_3
w_2	=	-6	—	$2x_1$	—	x_2	+	x_3

Pivot: w_2 out of basis and x_3 in which gives:

ζ	=	-6	—	$3x_1$	—	$2x_2$	—	w_2
w_1	=	6	_	$3x_1$	_	$3x_2$	_	w_2
x_3	=	6	+	$2x_1$	+	x_2	+	w_2

So $x_1 = x_2 = 0$, $x_3 = 6$ (and $w_1 = 6$, $w_2 = 0$) is a feasible solution.

Second question: No. Because if x_3 is nonbasic variable it is zero, and then the the second equation becomes

$$-6 = 2x_1 + x_2 - x_3 + w_2 = 2x_1 + x_2 + w_2$$

Since all variables are nonnegative, $2x_1 + x_2 + w_2 \ge 0$ and it cannot be equal to -6. So, x_3 must be in the basis for each basic feasible solution.

Problem 3

Let $a \in \mathbb{R}^n$ where $||a|| = \sqrt{a^T a} = 1$, and let $b_1, b_2 \in \mathbb{R}$ with $b_1 < b_2$. Define $H_1 = \{x \in \mathbb{R}^n : a^T x = b_1\}$ and $H_2 = \{x \in \mathbb{R}^n : a^T x = b_2\}$.

3a

Determine the convex hull of $H_1 \cup H_2$ (with proof).

Solution: Define $C = \{x \in \mathbb{R}^n : b_1 \leq a^T x \leq b_2\}$. We claim that $\operatorname{conv}(H_1 \cup H_2) = C$. First, C is a polyhedron and therefore convex, and it

(Continued on page 4.)

contains $H_1 \cup H_2$. This implies that $\operatorname{conv}(H_1 \cup H_2) \subseteq C$. Next, if $x_0 \in C$ then $b_1 \leq a^T x_0 \leq b_2$. Consider $x^1 = x_0 - (a^T x_0 - b_1)a$ and $x^2 = x_0 + (b_2 - a^T x_0)a$. Then $x^1 \in H_1$, $x^2 \in H_2$ (by computing the inner products) and x_0 is clearly on the line segment between x^1 and x^2 . Therefore $x_0 \in \operatorname{conv}(H_1 \cup H_2)$. This proves that $\operatorname{conv}(H_1 \cup H_2) \supseteq C$, and therefore these two sets are equal.

Problem 4

Consider the LP problem

$$\begin{array}{ll} \max & c^T x\\ \text{subject to} & \\ & Ax = b\\ & O \le x \le h \end{array} \tag{3}$$

Here $c, h \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ and the $m \times n$ matrix A are given, and O denotes the zero vector.

4a

Find the dual of problem (3).

Solution: Problem (2) may be written

$$\max\{c^{T}x: \begin{bmatrix} A\\ -A\\ I \end{bmatrix} x \le \begin{bmatrix} b\\ -b\\ h \end{bmatrix}, x \ge O\}$$

so the dual is (with variables $y_1, y_2 \in \mathbb{R}^m$ and $z \in \mathbb{R}^n$):

$$\min\{b^T y_1 - b^T y_2 + h^T z : \begin{bmatrix} A^T & -A^T & I \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ z \end{bmatrix} \ge c, \ y_1, y_2, z \ge O\}$$

or

$$\min\{b^T(y_1 - y_2) + h^T z : A^T(y_1 - y_2) + z \ge c, \ y_1, y_2, z \ge 0\}$$

By replacing $y_1 - y_2$ by y, the dual is equivalent to

$$\min\{b^T y + h^T z : A^T y + z \ge c, \ y \text{ free}, \ z \ge O\}$$

Consider the linear system

$$\sum_{j=1}^{n} x_j \le 1$$

$$O \le x_j \le h_j \quad (j \le n)$$
(4)

where each h_j is (strictly) positive. (Note: there are only inequalities.)

(Continued on page 5.)

4b

Use Fourier-Motzkin elimination to eliminate x_1 in (4). Then go on and eliminate x_2 , x_3 etc.; explain how x_k depends on x_{k+1}, \ldots, x_n in a general solution of (4).

Solution: Eliminate x_1 : From $0 \le x_j$ and $x_j \le h_j$ and $\sum_{j=1}^n x_j \le 1$ we get $0 \le x_1 \le \min\{h_1, 1 - \sum_{j=2}^n x_j\}$ and the new (projected) system

$$\sum_{j=2}^{n} x_j \le 1$$

$$O \le x_j \le h_j \quad (2 \le j \le n)$$

We repeat the process, and it is easy to show by induction that when x_{k-1} is eliminated (for some k) we get $0 \le x_k \le \min\{h_k, 1 - \sum_{j=k+1}^n x_j\}$ and the new (projected) system

$$\sum_{j=k+1}^{n} x_j \le 1$$

$$O \le x_j \le h_j \qquad (k+1 \le j \le n)$$

Problem 5

Consider the following minimum cost network flow problem. Define the directed graph D = (V, E) where $V = \{v_1, v_2, \ldots, v_5\}$ (the nodes) and E (the edges=arcs) consists of (v_i, v_{i+1}) for $1 \le i \le 4$ and the edge (v_2, v_4) . So D has 5 edges. Define the supply vector b by $b_{v_1} = 1$, $b_{v_5} = -1$ and $b_{v_i} = 0$ for i = 2, 3, 4. Finally, define the cost $c_e = 1$ for every edge e.

5a

Draw the graph. Find all spanning trees in D (for each, give its edges). Let T_1 be the spanning tree which does not contain (v_3, v_4) , and compute the corresponding tree solution x^* .

Solution: (Draw e.g. along a line.) There are 3 Spanning trees: $E \setminus \{(v_3, v_4)\}, E \setminus \{(v_2, v_3)\}$ and $E \setminus \{(v_2, v_4)\}$. Computing x^* by leaf elimination: $x_{v_3v_4} = 0$ and $x_{v_2v_3} = 0$ while $x_e = 1$ for all other edges e. (The solution corresponds to a shortest v_1v_5 -path.)

5b

Compute the dual solution (y, z) corresponding to the spanning tree T_1 above: let here $y_{v_1} = 0$ (so v_1 is the root). Explain why x^* above is an optimal solution of the minimum cost network flow problem.

Solution: Computing y: use $y_v - y_u = c_{uv}$ for each edge in the tree. This gives: $y_{v_1} = 0$, $y_{v_2} = 1$, $y_{v_3} = y_{v_4} = 2$ and $y_{v_5} = 3$. Computing z: use $z_{uv} = y_u + c_{uv} - y_v$ for each edge (u, v) not in the tree (the other z's are zero):

(Continued on page 6.)

This gives $z_{v_3v_4} = 2 + 1 - 2 = 1 \ge 0$. So $z \ge O$ and the present basis is optimal (by the network simplex algorithm); so x^* is optimal.

Let A be the node-arc (node-edge) incidence matrix of the graph D above.

5c

Let r be the maximum rank of a square submatrix of A. Find r and a submatrix B of A such that B has rank r. Explain your answer with reference to general theory.

Solution: Since D is connected A has rank equal to |V| - 1 = 4 (by Proposition in lecture notes, or Theorem 14.1 in Vanderbei). Therefore each square submatrix has rank ≤ 4 . By Theorem 14.1 such a submatrix B has rank 4 if and only if its columns correspond to the edges of a spanning tree. Therefore r = 4. So if we use the spanning tree T_1 , and order nodes/edges according to tree elimination, we get a submatrix B with rows corresponding to (e.g.) v_5, v_4, v_3, v_2 and columns corresponding to $(v_4, v_5), (v_2, v_4), (v_2, v_3),$ (v_1, v_2) , (in this order). Then

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & -1 & 1 \end{bmatrix}$$

which is unit upper triangular and invertible (nonsingular) so it has rank 4.