
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Examination in INF-MAT 3370 — Linear optimization

Day of examination: May 31., 2011

Examination hours: 09.00 – 13.00

This problem set consists of 6 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

There are 10 questions each with roughly the same weight.

Problem 1
Consider the LP problem:

max x1 − 2x2 + x3

subject to
x1 + 2x2 + x3 ≤ 12

2x1 + x2 − x3 ≤ 6

−x1 + 3x2 ≤ 9

x1, x2, x3 ≥ 0.

(1)

1a

Solve problem (1) using the simplex algorithm with initial point x = (0, 0, 0).
Find an optimal solution, including values on the slack variables, and the op-
timal value.

Solution:

ζ = 0 + x1 − 2x2 + x3

w1 = 12 − x1 − 2x2 − x3

w2 = 6 − 2x1 − x2 + x3

w3 = 9 + x1 − 3x2

Pivot: x3 in and w1 out:

ζ = 12 − 4x2 − w1

x3 = 12 − x1 − 2x2 − w1

w2 = 18 − 3x1 − 3x2 − w1

w3 = 9 + x1 − 3x2

(Continued on page 2.)
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Optimal solution: x1 = x2 = 0, x3 = 12 and w1 = 0, w2 = 18, w3 = 9.);
optimal value is 12.

1b

Find the dual problem of (1). Moreover, find an optimal solution of the dual,
including dual slacks, preferable without any computations.

Solution: The dual is

min 12y1 + 6y2 + 9y3

subject to
y1 + 2y2 − y3 ≥ 1

2y1 + y2 + 3y3 ≥ −2

y1 − y2 ≥ 1

y1, y2, y3 ≥ 0.

From the optimal dictionary in the previous question we see that an optimal
solution in the dual is y1 = 1, y2 = 0, y3 = 0 and dual slacks z1 = 0, z2 = 4,
z3 = 0.

Let a ≤ 0 be a parameter (number) and define the function fa : R3 → R
by fa(x1, x2, x3) = x1 + ax2 + x3. Let (P) denote the problem obtained from
the LP problem (1) by replacing the objective function by fa(x1, x2, x3), but
using the same constraints.

1c

Find an x∗ which is optimal in (P) for all a ≤ 0, and show that it is optimal.

Solution: x∗ = (0, 0, 12) (found in a)) is optimal in (P), and the optimal
value is 12. Proof: The solution x∗is feasible (shown before), and fa(x

∗) = 12.
Moreover, by adding the constraint x1 + 2x2 + x3 ≤ 12 and a − 2 (which is
negative) times the constraint x2 ≥ 0 we get x1 + 2x2 + x3 + (a − 2)x2 ≤
12 + 0 = 12. So

fa(x) = x1 + ax2 + x3 ≤ 12

Thus each feasible solution in (P) must satisfy this constraint. This implies
that x∗ is optimal.

Alternative: use simplex algorithm with the same pivots as in a) and note
that the same solution is optimal (using that a ≤ 0).

(Continued on page 3.)
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Problem 2
Consider the LP problem:

max −x1 − x2 − x3

subject to
x1 + 2x2 + x3 ≤ 12

2x1 + x2 − x3 ≤ −6

x1, x2, x3 ≥ 0.

(2)

2a

Use the dual simplex method to find a feasible solution in (2). (If you don’t
remember this method, you may also get some (but not full) score using
another method.) Is there a basic feasible solution in (2) where x3 is not a
basic variable (i.e., x3 is not in the basis)? Give reasons for your answer.

Solution:

ζ = 0 − x1 − x2 − x3

w1 = 12 − x1 − 2x2 − x3

w2 = −6 − 2x1 − x2 + x3

Pivot: w2 out of basis and x3 in which gives:

ζ = −6 − 3x1 − 2x2 − w2

w1 = 6 − 3x1 − 3x2 − w2

x3 = 6 + 2x1 + x2 + w2

So x1 = x2 = 0, x3 = 6 (and w1 = 6, w2 = 0) is a feasible solution.
Second question: No. Because if x3 is nonbasic variable it is zero, and

then the the second equation becomes

−6 = 2x1 + x2 − x3 + w2 = 2x1 + x2 + w2

Since all variables are nonnegative, 2x1 + x2 +w2 ≥ 0 and it cannot be equal
to −6. So, x3 must be in the basis for each basic feasible solution.

Problem 3
Let a ∈ Rn where ‖a‖ =

√
aTa = 1, and let b1, b2 ∈ R with b1 < b2. Define

H1 = {x ∈ Rn : aTx = b1} and H2 = {x ∈ Rn : aTx = b2}.

3a

Determine the convex hull of H1 ∪H2 (with proof).

Solution: Define C = {x ∈ Rn : b1 ≤ aTx ≤ b2}. We claim that
conv(H1 ∪ H2) = C. First, C is a polyhedron and therefore convex, and it

(Continued on page 4.)
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contains H1∪H2. This implies that conv(H1∪H2) ⊆ C. Next, if x0 ∈ C then
b1 ≤ aTx0 ≤ b2. Consider x1 = x0− (aTx0− b1)a and x2 = x0 +(b2−aTx0)a.
Then x1 ∈ H1, x2 ∈ H2 (by computing the inner products) and x0 is clearly
on the line segment between x1 and x2. Therefore x0 ∈ conv(H1 ∪H2). This
proves that conv(H1 ∪H2) ⊇ C, and therefore these two sets are equal.

Problem 4
Consider the LP problem

max cTx
subject to

Ax = b

O ≤ x ≤ h

(3)

Here c, h ∈ Rn, b ∈ Rm and the m × n matrix A are given, and O denotes
the zero vector.

4a

Find the dual of problem (3).

Solution: Problem (2) may be written

max{cTx :

 A
−A
I

x ≤
 b
−b
h

 , x ≥ O}

so the dual is (with variables y1, y2 ∈ Rm and z ∈ Rn):

min{bTy1 − bTy2 + hT z :
[
AT −AT I

]  y1

y2

z

 ≥ c, y1, y2, z ≥ O}

or
min{bT (y1 − y2) + hT z : AT (y1 − y2) + z ≥ c, y1, y2, z ≥ O}

By replacing y1 − y2 by y, the dual is equivalent to

min{bTy + hT z : ATy + z ≥ c, y free, z ≥ O}

Consider the linear system∑n
j=1 xj ≤ 1

O ≤ xj ≤ hj (j ≤ n)
(4)

where each hj is (strictly) positive. (Note: there are only inequalities.)

(Continued on page 5.)
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4b

Use Fourier-Motzkin elimination to eliminate x1 in (4). Then go on and
eliminate x2, x3 etc.; explain how xk depends on xk+1, . . . , xn in a general
solution of (4).

Solution: Eliminate x1: From 0 ≤ xj and xj ≤ hj and
∑n

j=1 xj ≤ 1 we
get 0 ≤ x1 ≤ min{h1, 1−

∑n
j=2 xj} and the new (projected) system∑n
j=2 xj ≤ 1

O ≤ xj ≤ hj (2 ≤ j ≤ n)

We repeat the process, and it is easy to show by induction that when xk−1 is
eliminated (for some k) we get 0 ≤ xk ≤ min{hk, 1 −

∑n
j=k+1 xj} and the

new (projected) system∑n
j=k+1 xj ≤ 1

O ≤ xj ≤ hj (k + 1 ≤ j ≤ n)

Problem 5
Consider the following minimum cost network flow problem. Define the
directed graph D = (V,E) where V = {v1, v2, . . . , v5} (the nodes) and E
(the edges=arcs) consists of (vi, vi+1) for 1 ≤ i ≤ 4 and the edge (v2, v4). So
D has 5 edges. Define the supply vector b by bv1 = 1, bv5 = −1 and bvi

= 0
for i = 2, 3, 4. Finally, define the cost ce = 1 for every edge e.

5a

Draw the graph. Find all spanning trees in D (for each, give its edges). Let
T1 be the spanning tree which does not contain (v3, v4), and compute the
corresponding tree solution x∗.

Solution: (Draw e.g. along a line.) There are 3 Spanning trees:
E \ {(v3, v4)}, E \ {(v2, v3)} and E \ {(v2, v4)}. Computing x∗ by leaf
elimination: xv3v4 = 0 and xv2v3 = 0 while xe = 1 for all other edges e.
(The solution corresponds to a shortest v1v5-path.)

5b

Compute the dual solution (y, z) corresponding to the spanning tree T1 above:
let here yv1 = 0 (so v1 is the root). Explain why x∗ above is an optimal
solution of the minimum cost network flow problem.

Solution: Computing y: use yv − yu = cuv for each edge in the tree. This
gives: yv1 = 0, yv2 = 1, yv3 = yv4 = 2 and yv5 = 3. Computing z: use
zuv = yu +cuv−yv for each edge (u, v) not in the tree (the other z’s are zero):

(Continued on page 6.)
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This gives zv3v4 = 2 + 1 − 2 = 1 ≥ 0. So z ≥ O and the present basis is
optimal (by the network simplex algorithm); so x∗ is optimal.

Let A be the node-arc (node-edge) incidence matrix of the graphD above.

5c

Let r be the maximum rank of a square submatrix of A. Find r and a
submatrix B of A such that B has rank r. Explain your answer with reference
to general theory.

Solution: Since D is connected A has rank equal to |V | − 1 = 4 (by
Proposition in lecture notes, or Theorem 14.1 in Vanderbei). Therefore each
square submatrix has rank ≤ 4. By Theorem 14.1 such a submatrix B has
rank 4 if and only if its columns correspond to the edges of a spanning tree.
Therefore r = 4. So if we use the spanning tree T1, and order nodes/edges
according to tree elimination, we get a submatrix B with rows corresponding
to (e.g.) v5, v4, v3, v2 and columns corresponding to (v4, v5), (v2, v4), (v2, v3),
(v1, v2), (in this order). Then

B =


1 0 0 0
−1 1 0 0

0 0 1 0
0 −1 −1 1


which is unit upper triangular and invertible (nonsingular) so it has rank 4.


