UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT 3370 - Linear optimization
Day of examination: May 31., 2011
Examination hours: 09.00-13.00
This problem set consists of 6 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

There are 10 questions each with roughly the same weight.

Problem 1

Consider the LP problem:
$\max \quad x_{1}-2 x_{2}+x_{3}$
subject to

$$
\begin{align*}
& x_{1}+2 x_{2}+x_{3} \leq 12 \\
& 2 x_{1}+x_{2}-x_{3} \leq 6 \tag{1}\\
&-x_{1}+3 x_{2} \leq 9 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{align*}
$$

1a
Solve problem (1) using the simplex algorithm with initial point $x=(0,0,0)$. Find an optimal solution, including values on the slack variables, and the optimal value.

Solution:

$$
\begin{aligned}
\zeta & =0+x_{1}-2 x_{2}+x_{3} \\
\hline w_{1} & =12-x_{1}-2 x_{2}-x_{3} \\
w_{2} & =6-2 x_{1}-x_{2}+x_{3} \\
w_{3} & =9+x_{1}-3 x_{2}
\end{aligned}
$$

Pivot: x_{3} in and w_{1} out:

$$
\begin{aligned}
& \zeta=12-r
\end{aligned} \quad 4 x_{2}-w_{1} .
$$

(Continued on page 2.)

Optimal solution: $x_{1}=x_{2}=0, x_{3}=12$ and $\left.w_{1}=0, w_{2}=18, w_{3}=9.\right) ;$ optimal value is 12 .

1b

Find the dual problem of (1). Moreover, find an optimal solution of the dual, including dual slacks, preferable without any computations.

Solution: The dual is

$$
\begin{array}{lll}
\min & 12 y_{1}+6 y_{2}+9 y_{3} \\
\text { subject to } \\
y_{1} & +2 y_{2}-y_{3} & \geq 1 \\
2 y_{1} & +y_{2}+3 y_{3} & \geq-2 \\
y_{1} & -y_{2} & \geq 1 \\
& y_{1}, y_{2}, y_{3} \geq 0 .
\end{array}
$$

From the optimal dictionary in the previous question we see that an optimal solution in the dual is $y_{1}=1, y_{2}=0, y_{3}=0$ and dual slacks $z_{1}=0, z_{2}=4$, $z_{3}=0$.

Let $a \leq 0$ be a parameter (number) and define the function $f_{a}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $f_{a}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+a x_{2}+x_{3}$. Let (P) denote the problem obtained from the LP problem (1) by replacing the objective function by $f_{a}\left(x_{1}, x_{2}, x_{3}\right)$, but using the same constraints.

1c

Find an x^{*} which is optimal in (P) for all $a \leq 0$, and show that it is optimal.
Solution: $x^{*}=(0,0,12)($ found in a)) is optimal in (P), and the optimal value is 12. Proof: The solution x^{*} is feasible (shown before), and $f_{a}\left(x^{*}\right)=12$. Moreover, by adding the constraint $x_{1}+2 x_{2}+x_{3} \leq 12$ and $a-2$ (which is negative) times the constraint $x_{2} \geq 0$ we get $x_{1}+2 x_{2}+x_{3}+(a-2) x_{2} \leq$ $12+0=12$. So

$$
f_{a}(x)=x_{1}+a x_{2}+x_{3} \leq 12
$$

Thus each feasible solution in (P) must satisfy this constraint. This implies that x^{*} is optimal.

Alternative: use simplex algorithm with the same pivots as in a) and note that the same solution is optimal (using that $a \leq 0$).

Problem 2

Consider the LP problem:

$$
\begin{array}{lrl}
\max & -x_{1} & -x_{2}-x_{3} \\
\text { subject to } & \\
x_{1}+2 x_{2}+x_{3} \leq 12 \tag{2}\\
2 x_{1}+x_{2}-x_{3} \leq-6 \\
x_{1}, x_{2}, x_{3} \geq 0 .
\end{array}
$$

$2 a$

Use the dual simplex method to find a feasible solution in (2). (If you don't remember this method, you may also get some (but not full) score using another method.) Is there a basic feasible solution in (2) where x_{3} is not a basic variable (i.e., x_{3} is not in the basis)? Give reasons for your answer.

Solution:

$$
\begin{array}{r}
\zeta=0-x_{1}-x_{2}-x_{3} \\
\hline w_{1}=12-x_{1}-2 x_{2}-x_{3} \\
w_{2}=-6-2 x_{1}-x_{2}+x_{3}
\end{array}
$$

Pivot: w_{2} out of basis and x_{3} in which gives:

$$
\begin{aligned}
& \zeta=-6-3 x_{1}-2 x_{2}-w_{2} \\
& \hline w_{1}=6-3 x_{1}-3 x_{2}-w_{2} \\
& x_{3}=6+2 x_{1}+x_{2}+w_{2}
\end{aligned}
$$

So $x_{1}=x_{2}=0, x_{3}=6$ (and $w_{1}=6, w_{2}=0$) is a feasible solution.
Second question: No. Because if x_{3} is nonbasic variable it is zero, and then the the second equation becomes

$$
-6=2 x_{1}+x_{2}-x_{3}+w_{2}=2 x_{1}+x_{2}+w_{2}
$$

Since all variables are nonnegative, $2 x_{1}+x_{2}+w_{2} \geq 0$ and it cannot be equal to $-6 . S o, x_{3}$ must be in the basis for each basic feasible solution.

Problem 3

Let $a \in \mathbb{R}^{n}$ where $\|a\|=\sqrt{a^{T} a}=1$, and let $b_{1}, b_{2} \in \mathbb{R}$ with $b_{1}<b_{2}$. Define $H_{1}=\left\{x \in \mathbb{R}^{n}: a^{T} x=b_{1}\right\}$ and $H_{2}=\left\{x \in \mathbb{R}^{n}: a^{T} x=b_{2}\right\}$.

3a

Determine the convex hull of $H_{1} \cup H_{2}$ (with proof).
Solution: Define $C=\left\{x \in \mathbb{R}^{n}: b_{1} \leq a^{T} x \leq b_{2}\right\}$. We claim that $\operatorname{conv}\left(H_{1} \cup H_{2}\right)=C$. First, C is a polyhedron and therefore convex, and it
contains $H_{1} \cup H_{2}$. This implies that $\operatorname{conv}\left(H_{1} \cup H_{2}\right) \subseteq C$. Next, if $x_{0} \in C$ then $b_{1} \leq a^{T} x_{0} \leq b_{2}$. Consider $x^{1}=x_{0}-\left(a^{T} x_{0}-b_{1}\right) a$ and $x^{2}=x_{0}+\left(b_{2}-a^{T} x_{0}\right) a$. Then $x^{1} \in H_{1}, x^{2} \in H_{2}$ (by computing the inner products) and x_{0} is clearly on the line segment between x^{1} and x^{2}. Therefore $x_{0} \in \operatorname{conv}\left(H_{1} \cup H_{2}\right)$. This proves that $\operatorname{conv}\left(H_{1} \cup H_{2}\right) \supseteq C$, and therefore these two sets are equal.

Problem 4

Consider the LP problem

$$
\begin{array}{lc}
\max & c^{T} x \\
\text { subject to } & A x=b \\
& O \leq x \leq h \tag{3}
\end{array}
$$

Here $c, h \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$ and the $m \times n$ matrix A are given, and O denotes the zero vector.

4 a

Find the dual of problem (3).
Solution: Problem (2) may be written

$$
\max \left\{c^{T} x:\left[\begin{array}{r}
A \\
-A \\
I
\end{array}\right] x \leq\left[\begin{array}{r}
b \\
-b \\
h
\end{array}\right], x \geq O\right\}
$$

so the dual is (with variables $y_{1}, y_{2} \in \mathbb{R}^{m}$ and $z \in \mathbb{R}^{n}$):

$$
\min \left\{b^{T} y_{1}-b^{T} y_{2}+h^{T} z:\left[\begin{array}{lll}
A^{T} & -A^{T} & I
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
z
\end{array}\right] \geq c, y_{1}, y_{2}, z \geq O\right\}
$$

or

$$
\min \left\{b^{T}\left(y_{1}-y_{2}\right)+h^{T} z: A^{T}\left(y_{1}-y_{2}\right)+z \geq c, y_{1}, y_{2}, z \geq O\right\}
$$

By replacing $y_{1}-y_{2}$ by y, the dual is equivalent to

$$
\min \left\{b^{T} y+h^{T} z: A^{T} y+z \geq c, y \text { free, } z \geq O\right\}
$$

Consider the linear system

$$
\begin{align*}
& \sum_{j=1}^{n} x_{j} \leq 1 \\
& O \leq x_{j} \leq h_{j} \quad(j \leq n) \tag{4}
\end{align*}
$$

where each h_{j} is (strictly) positive. (Note: there are only inequalities.)

4b

Use Fourier-Motzkin elimination to eliminate x_{1} in (4). Then go on and eliminate x_{2}, x_{3} etc.; explain how x_{k} depends on x_{k+1}, \ldots, x_{n} in a general solution of (4).

Solution: Eliminate x_{1} : From $0 \leq x_{j}$ and $x_{j} \leq h_{j}$ and $\sum_{j=1}^{n} x_{j} \leq 1$ we get $0 \leq x_{1} \leq \min \left\{h_{1}, 1-\sum_{j=2}^{n} x_{j}\right\}$ and the new (projected) system

$$
\begin{aligned}
& \sum_{j=2}^{n} x_{j} \leq 1 \\
& O \leq x_{j} \leq h_{j} \quad(2 \leq j \leq n)
\end{aligned}
$$

We repeat the process, and it is easy to show by induction that when x_{k-1} is eliminated (for some k) we get $0 \leq x_{k} \leq \min \left\{h_{k}, 1-\sum_{j=k+1}^{n} x_{j}\right\}$ and the new (projected) system

$$
\begin{aligned}
& \sum_{j=k+1}^{n} x_{j} \leq 1 \\
& O \leq x_{j} \leq h_{j} \quad(k+1 \leq j \leq n)
\end{aligned}
$$

Problem 5

Consider the following minimum cost network flow problem. Define the directed graph $D=(V, E)$ where $V=\left\{v_{1}, v_{2}, \ldots, v_{5}\right\}$ (the nodes) and E (the edges=arcs) consists of $\left(v_{i}, v_{i+1}\right)$ for $1 \leq i \leq 4$ and the edge $\left(v_{2}, v_{4}\right)$. So D has 5 edges. Define the supply vector b by $b_{v_{1}}=1, b_{v_{5}}=-1$ and $b_{v_{i}}=0$ for $i=2,3,4$. Finally, define the $\operatorname{cost} c_{e}=1$ for every edge e.

$5 a$

Draw the graph. Find all spanning trees in D (for each, give its edges). Let T_{1} be the spanning tree which does not contain $\left(v_{3}, v_{4}\right)$, and compute the corresponding tree solution x^{*}.

Solution: (Draw e.g. along a line.) There are 3 Spanning trees: $E \backslash\left\{\left(v_{3}, v_{4}\right)\right\}, E \backslash\left\{\left(v_{2}, v_{3}\right)\right\}$ and $E \backslash\left\{\left(v_{2}, v_{4}\right)\right\}$. Computing x^{*} by leaf elimination: $x_{v_{3} v_{4}}=0$ and $x_{v_{2} v_{3}}=0$ while $x_{e}=1$ for all other edges e. (The solution corresponds to a shortest $v_{1} v_{5}$-path.)

5b

Compute the dual solution (y, z) corresponding to the spanning tree T_{1} above: let here $y_{v_{1}}=0$ (so v_{1} is the root). Explain why x^{*} above is an optimal solution of the minimum cost network flow problem.

Solution: Computing y : use $y_{v}-y_{u}=c_{u v}$ for each edge in the tree. This gives: $y_{v_{1}}=0, y_{v_{2}}=1, y_{v_{3}}=y_{v_{4}}=2$ and $y_{v_{5}}=3$. Computing z: use $z_{u v}=y_{u}+c_{u v}-y_{v}$ for each edge (u, v) not in the tree (the other z 's are zero):

This gives $z_{v_{3} v_{4}}=2+1-2=1 \geq 0$. So $z \geq O$ and the present basis is optimal (by the network simplex algorithm); so x^{*} is optimal.

Let A be the node-arc (node-edge) incidence matrix of the graph D above.

5c

Let r be the maximum rank of a square submatrix of A. Find r and a submatrix B of A such that B has rank r. Explain your answer with reference to general theory.

Solution: Since D is connected A has rank equal to $|V|-1=4$ (by Proposition in lecture notes, or Theorem 14.1 in Vanderbei). Therefore each square submatrix has rank ≤ 4. By Theorem 14.1 such a submatrix B has rank 4 if and only if its columns correspond to the edges of a spanning tree. Therefore $r=4$. So if we use the spanning tree T_{1}, and order nodes/edges according to tree elimination, we get a submatrix B with rows corresponding to (e.g.) $v_{5}, v_{4}, v_{3}, v_{2}$ and columns corresponding to $\left(v_{4}, v_{5}\right),\left(v_{2}, v_{4}\right),\left(v_{2}, v_{3}\right)$, $\left(v_{1}, v_{2}\right)$, (in this order). Then

$$
B=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & -1 & 1
\end{array}\right]
$$

which is unit upper triangular and invertible (nonsingular) so it has rank 4.

