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Examination in: INF-MAT 3370 � Linear optimization

Day of examination: June 5, 2012

Examination hours: 09.00 � 13.00

This problem set consists of 6 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

There are 10 questions each with roughly the same qeight.

Solutions.

Problem 1

Consider the LP problem:

max −2x1 + 4x2 + 2x3
subject to

−x1 − x2 ≤ 0

−3x1 + x2 − 2x3 ≤ 1

x1 − x2 − 3x3 ≤ 3

x1, x2, x3 ≥ 0.

(1)

1a

Solve problem (1) using the simplex algorithm. Find, if possible, a fea-
sible solution (point) with value 14 on the objective function (which is
f(x) = −2x1 + 4x2 + 2x3).

Solution:

ζ = 0 − 2x1 + 4x2 + 2x3
w1 = 0 + x1 + x2
w2 = 1 + 3x1 − x2 + 2x3
w3 = 3 − x1 + x2 + 3x3

(Continued on page 2.)
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Pivot: x2 in and w2 out:

ζ = 4 + 10x1 − 4w2 + 10x3
w1 = 1 + 4x1 − w2 + 2x3
x2 = 1 + 3x1 − w2 + 2x3
w3 = 4 + 2x1 − w2 + 5x3

The problem is unbounded as we may increase x1 towards in�nity (among
feasible solutions). Let x1 = 1, x2 = 4, x3 = 0 (and w1 = 5, w2 = 0, w3 = 6).
Then x = (x1, x2, x3) is feasible and f(x) = 14.

�

Let (P2) be the LP problem obtained from problem (1) by adding the
constraint

x1 + x2 + x3 ≤ 8.

1b

Explain, without solving (P2) numerically, why (P2) has an optimal solution.

Solution: Due to the new constraint each feasible x = (x1, x2, x3) in (P2)
satis�es 0 ≤ xi ≤ 8 so the feasible set is bounded. Therefore (P2) is feasible
(e.g. the zero vector is feasible) and not unbounded, and by the Fundamental
Theorem of LP it must have an optimal solution. (Alternative solution: The
conclusion also follows from the Extreme Value Theorem: the feasible set
is nonempt,y closed and bounded and f is continuous, so the maximum is
attained.)

�

1c

What is Bland's rule? Explain brie�y its purpose and why it may not be
very e�cient in practice.

See Vanderbei. Good for theoretical purposes: shows that the simplex
algorithm terminates with this anti-cycling rule. May be very bad in practice
as, e.g., the incoming variable may have very small coe�cient and give small
improvement; many pivots. �

Consider the LP problem given by the following dictionary

ζ = 0 − x1 − 3x2 − x3
w1 = −5 + x1 + 2x2 − x3
w2 = −1 + 2x1 − x2 + x3

(Continued on page 3.)
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1d

Solve the problem using the dual simplex algorithm. Find both an optimal
primal solution and an optimal solution of the dual, and the optimal value.

Solution: w1 leaves the basis (as −5 < −1) and the ratio for x1 is 1/1 = 1
and for x2 the ratio is 3/2, so x1 enters the basis. The pivot gives

ζ = −5 − w1 − x2 − 2x3
x1 = 5 + w1 − 2x2 + x3
w2 = 9 + 2w1 − 5x2 + 3x3

So optimal primal solution: x1 = 5, x2 = 0, x3 = 0, w1 = 0, w2 = 9. Optimal
value is −5. Optimal dual solution: z1 = 0, z2 = 1, z3 = 2, y1 = 1, y2 = 0.

�

Problem 2

Consider the matrix game given by the following 3× 4 matrix A

A =

 2 7 6 10
1 3 3 2
2 0 5 4

 .
2a

Find a pure minmax strategy for the row player R and a pure maxmin
strategy for the column player K. Also determine the value of the game.

Solution: The pair (2, 3) is a saddle point as a23 = 3 is the minimum in
column 3 and the maximum in row 2. By a theorem (see lecture/book) this
means that (row) 2 is a pure minmax strategy for player R and (column) 3 is
a pure maxmin strategy for player K. The value of the game is V = a23 = 3.

�

Consider the 3× 3 matrix

Ax =

 x1 x2 x3
3 1 1
2 0 1


which depends on the parameter vector x = (x1, x2, x3) ∈ R3.

(Continued on page 4.)
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2b

Assume that x is nonnegative and satis�es x1 + x2 + x3 = 1. How large can
the determinant of Ax be? Find all x such that detAx attains this maximum
value.

Solution: f(x) = detAx = x1(1−0)−x2(3−2)+x3(0−2) = x1−x2−2x3.
So we get the LP

max x1 − x2 − 2x3
subject to

x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0.

The unique optimal solution is x = (1, 0, 0) (solve by simplex method, or just
check the three basic solutions). The maximum value of detAx is therefore
1.

�

Problem 3

Consider the minimum cost network �ow problem in the directed graph D
shown in Figure 1. The four nodes (vertices) are u, v, w and p and the
numbers along the edges are the costs. The supply/demand is given by
bu = 4, bv = −1, bw = 0, bp = −3 (so u is a supply node, while v and p are
demand nodes).

u v

w p

6

3 4
1

2

Figure 1: The directed graph D.

3a

Compute the tree solution x that corresponds to the tree T1 with edges (u, v),
(u,w) and (v, p). Can this x be obtained as the tree solution of another
spanning tree as well? Explain your answer.

(Continued on page 5.)
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Solution: Use leaf elimination, and compute (for instance in the order
(v, p), (u, v) and (u,w) ). This gives xvp = 3, xuv = 4, xuw = 0 and
xwv = xwp = 0. Next, x is also the tree solution for two other spanning
trees, those obtained from T1 by replacing (u,w) by either (w, v) or (w, p). �

3b

Find an optimal solution (and the optimal value) of the network �ow problem,
and indicate your computations.

Solution: Start with the spanning tree T1 and x above. Use node u as
the root. We compute y using yj = yi + cij for each edge (i, j) in T1: yu = 0,
yw = 3, yv = 6, yp = 10. Next we compute z from zij = yi + cij − yj for
each edge (i, j) (this is zero for edges in the tree). We get: zwv = −2 and
zwp = −5. So not optimal.

Pivot: Take (w, p) into the basis. Let xwp = ε, so xvp = 3− ε, xuv = 4− ε,
xuw = ε. Maximum ε is 3. New spanning tree is T1 with edges (u, v),
u,w) and (w, p). The tree solution is now xuv = 1, xuw = 3, xwp = 3 and
xwv = xwp = 0. Dual solution: yu = 0, yw = 3, yv = 6, yp = 5 and zwv = −2
and zwp = 5. So not optimal.

Pivot: Take (w, v) into the basis. This gives xuw = 4, xwv = 1, xwp = 3
and xuv = xvp = 0. Dual solution: yu = 0, yw = 3, yv = 4, yp = 5 and
zuv = 2 and zvp = 3. So optimal. The optimal value is 19.

�

Problem 4

Let P be the set of all solutions to the linear system

7x1 + x2 + 4x3 ≤ 8

0 ≤ x1, x2, x3 ≤ 1

(so each variable lies in the interval [0, 1]).

4a

Find all extreme points of P .

Solution: See the example in Section 7 in the lecture notes on convexity.
P is a polyhedron and either of the two techniques may be used. First we �nd
extreme points that are (0, 1)-vectors satisfying the inequality 7x1+x2+4x3 ≤
8. This gives: (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1) (but NOT
(1, 0, 1)). Moreover, we compute extreme points satisfying 7x1+x2+4x3 = 8
with at most one component strictly between 0 and 1. This gives (4/7, 0, 1),
(1, 0, 1/4) and (3/7, 1, 1). These are all the extreme points.

(Continued on page 6.)
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�

Consider the set

K = {x ∈ Rn : Ax ≤ b, x = Cy, y ≥ O,
k∑

i=1

yi = 1}

where k, m and n are positive integers, A is an m × n matrix, b ∈ Rm and
C is an n × k matrix. Here O denotes the zero vector. (So: x ∈ K means
that there exists a y such that all the conditions indicated hold.)

4b

Prove that K is a polyhedron in Rn.

Solution: Consider the set

L = {(x, y) ∈ Rn × Rk : x = Cy, y ≥ O,
k∑

i=1

yi = 1}.

This is a set in Rn × Rk which is the solution set of a �nite system of linear
equations and inequalities. Therefore L is a polyhedron. We now use Fourier-
Motzkin elimination on the system de�ning L and eliminate y1, y2, . . . , yk, one
variable at the time. From a theorem in "A mini-introduction to convexity"
we then obtain the projection of L into the space of the x-variable; call this
set PL. Moreover, the new system (from FM-elimination) is a linear system,
so the projectionPL is a polyhedron. Now

K = {x ∈ Rn : Ax ≤ b, x = Cy, y ≥ O,
∑k

i=1 yi = 1}
= {x ∈ Rn : x = Cy, y ≥ O,

∑k
i=1 yi = 1} ∩ {x ∈ Rn : Ax ≤ b}

= PL ∩ {x ∈ Rn : Ax ≤ b}

But {x : Ax ≤ b} is also a polyhedron, and the intersection of two polyhedra
is a polyhedron (follows directly from the de�nition). Therefore K is a
polyhedron in Rn.

�


