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Examination in: INF-MAT 3370 — Linear optimization

Day of examination: May 29, 2013

Examination hours: 14.30 – 18.30

This problem set consists of 6 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

There are 10 questions each with roughly the same weight.

Solutions.

Problem 1
Consider the LP problem

max x1 + 2x2 + 3x3
(P) subject to

x1 + 4x2 + 3x3 ≤ 6

3x1 + x2 + 2x3 ≤ 5

x1, x2, x3 ≥ 0.

1a

Solve problem (P) using the simplex algorithm. Find the optimal value and
an optimal solution. Write down the dual problem (D) of (P).

Solution:

ζ = 0 + x1 + 2x2 + 3x3
x4 = 6 − x1 − 4x2 − 3x3
x5 = 5 − 3x1 − x2 − 2x3

Pivot: x3 in and x4 out:

ζ = 6 + 0x1 − 2x2 − x4
x3 = 2 − (1/3)x1 − (4/3)x2 − (1/3)x4
x5 = 1 − (7/3)x1 + (5/3)x2 + (2/3)x4

(Continued on page 2.)
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So the optimal value is 6, and an optimal solution is x∗ =
(x∗1, x

∗
2, x
∗
3, x
∗
4, x
∗
5) = (0, 0, 2, 0, 1).

The dual (D) is

min 6y1 + 5y2
subject to

y1 + 3y2 ≥ 1

4y1 + y2 ≥ 2

3y1 + 2y2 ≥ 3

y1, y2 ≥ 0.

�

1b

Find an optimal solution of (D). Find all optimal solutions of problem (P).

Solution: From the optimal dictionary above we see that y1 = 1, y2 = 0
is an optimal solution in (D); here y1 and y2 corresponds to x4 and x5 (the
slack variables in (P)), respectively.

Any other optimal solution x than x∗ above must satisfy x2 = x4 = 0,
otherwise a lower value than 6 would be obtained (as their coefficients in the
objective function are strictly negative). x1 has coefficient 0, so it may be
increased and the objective remains at 6; the maximum value is x1 = 3/7
and then x3 = 2 − (1/3)(3/7) = 13/7. So another optimal basic solution is
x′ = (3/7, 0, 13/7, 0, 0). (This argument just simplifies a little compared to
making the full pivot where x1 enters and x5 leaves the basis). Then x∗ and
x′ are the only optimal basic solutions so the set of optimal solutions is the
line segment between x∗ and x′ (i.e., all convex combinations of these two
points).

�

1c

Give the definition of a polyhedron and an extreme point of a polyhedron.
Let F be the feasible set in (P), i.e., those points x ∈ R3 that satisfy all the
five constraints in (P). Decide if x = (1, 1, 0) is an extreme point of F , and
explain why.

Solution: A polyhedron is a set P of the form P = {x ∈ Rn : Ax ≤ b}
where A is a matrix and b is a vector. An extreme point of P is a point
which cannot be written as a convex combination of other points in P (or,
equivalently, as the midpoint on the line segment between two other points in
P .)

(Continued on page 3.)
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First, x ∈ F , so it is feasible. But x = (1/2)x1 + (1/2)x2 where
x1 = (1.1, 1, 0) and x2 = (0.9, 1, 0). Since x1, x2 ∈ F , this shows (by
definition) that x is not an extreme point of F . �

Problem 2
Let A and B be (real) matrices with n columns, and let b and c be vectors (of
suitable sizes), and let O denote the zero vector. Consider the LP problem

max cTx
(P) subject to

Ax ≤ b

Bx = O

x ≥ O.

2a

Find the dual of (P).

Solution: Problem (P) may be written

max{cTx : Ax ≤ b, Bx = O, x ≥ O} = max{cTx :

 A
B
−B

x ≤
 b
O
O

 , x ≥ O}.

So the dual is

min{bTy1 : ATy1 +BTy2 + (−BT )y3 ≥ c, y1, y2, y3 ≥ O}

which becomes (by letting y0 = y2 − y3, a free variable)

min{bTy1 : ATy1 +BTy0 ≥ c, y1 ≥ O, y0 is free}

�

Problem 3
Consider the minimum cost network flow problem in the directed graph D
indicated in Figure 1. There are five nodes (vertices), u, v etc. The numbers
along the edges are the costs. The supply/demand is given by bu = 1, bv = 0,
bw = 3, bp = −1 and bq = −3 (so, for instance, u is a supply node, while q is
a demand node).

(Continued on page 4.)
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Figure 1: The directed graph D.

3a

Let T1 consist of (all nodes and) the edges (u,w), (w, p), (w, v) and (v, q).
Explain why T1 is a spanning tree. Compute the tree solution x = xT1

associated with T1.

Solution: T1 contains all nodes in D, it is connected and contains no
cycle; so it is a spanning tree. To compute x = xT1, use leaf elimination, and
compute (for instance in the order (v, q), (w, v), (w, p) and (u,w)). This
gives xvq = 3, xwv = 3, xwp = 1, xuw = 1 and xuv = xvp = xpq = 0.

�

3b

Use the network simplex algorithm to find an optimal solution, and the
optimal value, of the network flow problem. Show the computations.

Solution: Start with the spanning tree T1 and x above. Use node u as the
root. We compute y using yj = yi + cij for each edge (i, j) in T1: yu = 0,
yw = 1, yv = 3, yp = 7, yq = 8. Next we compute z from zij = yi +cij−yj for
each edge (i, j) (this is zero for edges in the tree). We get: zuv = 1, zvp = −1,
zpq = 5. So not optimal.

Pivot: Take (v, p) into the basis. Let xvp = ε, so xwv = 3 + ε, xwp = 1− ε.
Maximum ε is 1. New spanning tree is T2 with edges (u,w), (w, v), (v, p)
and (v, q). The tree solution is now xuw = 1, xwv = 4, xvp = 1 and xvq = 3
and the other flows are 0. Dual solution: yu = 0, yw = 1, yv = 3, yp = 6,
yq = 8, and zuv = 1, zwp = 1, zpq = 4. Since z is nonnegative, the present
tree solution x is optimal. The optimal value is 27.

�

3c

Let A be the incidence matrix of the directed graph D above (i.e., the
coefficient matrix of the flow balance equations). What is the rank of A?

(Continued on page 5.)
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Consider again the solution x = xT1 from question a). Assume that there are
(feasible) flow vectors x1 and x2 in the network flow problem such that

x = 0.2x1 + 0.8x2

What can you say about x1 and x2? Explain.

Solution: From the network flow theory we know that A has rank n− 1 =
5 − 1 = 4 and that every (feasible) tree solution is a basic feasible solution
in the network flow LP problem. Moreover, from convexity, we know that
a point is a basic feasible solution if and only if it is an extreme point of
the feasible set (a polyhedron). Therefore x above cannot be written as a
convex combination of two other feasible points, so the only possibility is that
x1 = x2 = x. This can also be shown directly using the constraints in the
flow problem and a small convexity argument. �

Problem 4
Let α and β be real numbers and consider the matrix game given by the
following 3× 4 matrix A (which depends on α, β)

A =

 3 8 7 11
2 4 α β
3 1 6 7

 .
4a

Determine the set H consisting of all (α, β) ∈ R2 such that (row) 2 is a pure
minmax strategy for the row player R and (column) 3 is a pure maxmin
strategy for the column player K.

Solution: From the lecture on game theory we know that: (row) 2 is a
pure minmax strategy for player R and (column) 3 is a pure maxmin strategy
for player K if and only if the pair (2, 3) is a saddle point of A. But this
means that a23 = α is the minimum in column 3 and the maximum in row
2, so

α ≤ 6, α ≥ 4, α ≥ β

or equivalently that
4 ≤ α ≤ 6, α ≥ β.

�

Problem 5
Let H be a real m× n matrix and let c ∈ Rm. Assume that a vector z̄ ∈ Rn

satisfies Hz̄ = c and z̄ ≥ O (so z̄ is nonnegative).

(Continued on page 6.)
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5a

Prove that Hz = c has a nonnegative solution z with at most m positive
variables. (Hint: consider the LP problem min {

∑m
i=1wi : Hz + w = c, z ≥

O, w ≥ O}.)

Solution: In the mentioned LP there is a feasible solution z = z̄, w = O,
and therefore the optimal value must be 0 (and z = z̄, w = O is optimal).
By the fundamental theorem of LP there is an optimal basic solution (z, w):
in this solution w = O and there are m basic variables (as the coefficient
matrix [H I] has rank m) and therefore at most m of the components of z
are positive in this solution. Moreover, b = Hz + w = Hz and the result
holds. �

Consider a linear system Ax ≤ b, where A is an m×n matrix and b ∈ Rm.

5b

State Farkas’ lemma for the system Ax ≤ b. Show that if Ax ≤ b is
inconsistent (meaning: has no solution), then Ax ≤ b contains a subsystem
with at most n+ 1 inequalities which is also inconsistent.

Solution: Farkas’ lemma: Ax ≤ b has a solution if and only if yT b ≥ 0
for every y ∈ Rm with yTA = O and y ≥ O.

Second part: Assume Ax ≤ b is inconsistent. By Farkas’ lemma there is
a y ∈ Rm with yTA = O, y ≥ Oand yT b < 0. We may assume that yT b = −1
by suitable (nonnegative) scaling of y. But then y is a nonnegative vector
satisfying the n+ 1 linear equations yTA = O and yT b = −1. By question a)
above, this system of equations must have a nonnegative solution y∗ with at
most n+1 positive components. But then the subsystem of Ax ≤ b consisting
of the inequalities corresponding to the n+ 1 positive components of y∗ must
be inconsistent; again due to Farkas’ lemma.

�


