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This problem set consists of 6 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

There are 10 questions each with roughly the same weight.

Solutions.

Problem 1

Assume you have solved phase I of an LP problem (using the standard
approach with x0 as the extra variable) and the optimal dictionary of phase
I is:

ξ = 0 − x0
x1 = 1 + 2x4 − x5
x2 = 2 − x0 − x5
x3 = 3 − x4 + x5

As usual all variables are nonnegative. The original objective function to be
maximized is f(x) = x1 − x2.

1a

Use the information above to solve the LP problem (i.e., phase II) using the
simplex algorithm and find an optimal solution, and the optimal value.

Solution: We see from phase I that the original problem is feasible (as
x0 = 0), and we compute the objective function: η = f(x) = x1 − x2 =
−1 + 2x4. This gives the dictionary

η = −1 + 2x4
x1 = 1 + 2x4 − x5
x2 = 2 − x5
x3 = 3 − x4 + x5

(Continued on page 2.)
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Pivot: x4 in and x3 out:

η = 5 − 2x3 + 2x5
x1 = 7 − 2x3 + x5
x2 = 2 − x5
x4 = 3 − x3 + x5

Pivot: x5 in and x2 out:

η = 9 − 2x3 − 2x2
x1 = 9 − 2x3 − x2
x5 = 2 − x2
x4 = 5 − x3 − x2

So the optimal value is 9, and an optimal solution is x1 = 9, x2 = 0,
x3 = 0, x4 = 5, x5 = 2.

Consider an LP problem (with nonnegative variables) where the simplex
algorithm leads to the following dictionary:

η = 1 + 2x4
x1 = 3 + x4
x2 = 0 − x4
x3 = 8 + 2x5

1b

Find all optimal solutions of this problem. Which of these optimal solutions
are degenerate?

Solution: The present solution is degenerate, but still we can make a
pivot: x4 enters and x2 leaves. This gives

ξ = 1 − 2x2
x1 = 3 − x2
x4 = 0 − x2
x3 = 8 + 2x5

Therefore all optimal solutions are x1 = 3, x2 = 0, x3 = 8+ 2x5, x4 = 0, x5
is free. All these solutions are degenerate as x2 = 0 in each one.

Problem 2

Let A be an m× n matrix, b ∈ Rm and u ∈ Rn
+. O denotes the zero vector.

Consider the LP problem

max
∑n

j=1 xj
(P) subject to

Ax ≤ b
O ≤ x ≤ u.

(Continued on page 3.)



Examination in MAT-INF3100, May 28, 2014 Page 3

2a

Find the dual of (P).

Solution: Let e = (1, . . . , 1) ∈ Rn. (As usual vectors are column vectors,
and identified with n-tuples.) Problem (P) may be written

max{eTx : Ax ≤ b, Ix ≤ u, x ≥ O} = max{eTx :

[
A
I

]
x ≤

[
b
u

]
, x ≥ O}.

The dual is

min{bT y1 + uT y2 : A
T y1 + IT y2 ≥ e, y1, y2 ≥ O}

i.e.
min{bT y1 + uT y2 : A

T y1 + y2 ≥ e, y1, y2 ≥ O}

Assume (for the remaining two questions) that Au ≤ 2b.

2b

Explain why (P) has an optimal solution.

Solution: Then A((1/2)u) ≤ b and O ≤ (1/2)u ≤ u, so (P) has a feasible
solution. Moreover, (P) is not unbounded as the feasible set is bounded (or
because the dual is feasible). By the fundamental theorem of LP it follows
that (P) has an optimal solution.

Assume that we have given a nonnegative vector z ∈ Rm satisfying
zTA ≥ O.

2c

Prove that bT z +
∑m

i=1 ui is an upper bound on the optimal value of (P).

Solution: Note that y1 = z, y2 = e (where e is the all ones vector) is
a feasible solution of the dual of (P), as both vectors are nonnegative and
AT z+ e ≥ O+ e = e. Therefore, by weak duality, the dual objective function
value bT z + eTu = bT z +

∑m
i=1 ui is an upper bound on the optimal value of

(P).

Problem 3

Consider the minimum cost network flow problem in the directed graph D
indicated in Figure 1. There are five nodes (vertices), u, v etc. The numbers
along the edges are the costs (per unit flow). The supply/demand is given
by bw = 2, bq = −2 and bu = bv = bp = 0. Let the spanning tree T consist
of all nodes and the edges (w, u), (w, v), (v, p) and (p, q).

Compute the tree solution x = xT associated with the tree T , and use
the network flow simplex algorithm to prove that x is an optimal solution of
the minimum cost network flow problem. What is the optimal value?

(Continued on page 4.)
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Figure 1: The directed graph D.

Solution: Using the tree solution algorithm (leaf elimination) we obtain:
xwv = xvp = xpq = 2 and the remaining four variables are all 0.

We compute the dual solution corresponding to T : Use node w as the
root. We compute y using yj = yi + cij for each edge (i, j) in T : yw = 0,
yv = 2, yp = 5, yq = 6, yu = 3. Next we compute z from zij = yi + cij − yj
for each edge (i, j) (this is zero for edges in the tree). We get: zuv = 5,
zwp = 1, zvq = 1. Since z ≥ O, the present solution is optimal, so x is
optimal solution of the minimum cost network flow problem. The optimal
value is 12.

Problem 4

4a

Give the definitions of (i) the convex hull, (ii) polytope, and (iii) polyhedron.
State (without proof) an important result from convexity which relates
polytopes and polyhedra.

Solution: See lecture notes on convexity.

Consider the linear system

x1 + x2 + x3 ≤ 2

x1 − x2 + x3 ≤ 2

−x1 + 3x2 − x3 ≤ 2

x2 + x3 ≤ 2

x3 ≤ 1

(1)

4b

Eliminate x1 using Fourier-Motzkin elimination and find the resulting system
(in x2, x3) and the bounds on x1 expressed in terms of x2 and x3. Finally,
determine the set

K = {x3 ∈ R : (x1, x2, x3) satisfies (1) for some x1, x2 ∈ R}

(Continued on page 5.)
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Solution: The inequalities in (1) involving x1 are

x1 ≤ 2 − x2 − x3

x1 ≤ 2 + x2 − x3

3x2 − x3 − 2 ≤ x1

so we get

3x2 − x3 − 2 ≤ x1 ≤ min{2− x2 − x3, 2 + x2 − x3}

and the new system in x2, x3 is

4x2 ≤ 4

2x2 ≤ 4

x2 + x3 ≤ 2

x3 ≤ 1

or equivalently
x2 ≤ 1

x2 + x3 ≤ 2

x3 ≤ 1

Here x2 + x3 ≤ 2 is redundant, so the answer is the system:

x2 ≤ 1

x3 ≤ 1

In order to find the set K we proceed and eliminate x2. We get

x2 ≤ 1

and the new system x3 ≤ 1. By Fourier-Motzkin theory this proves that

K = {x3 : x3 ≤ 1}.

Problem 5

Let

A =

[
M O

N A1

]
where (i) M is an invertible k × k matrix, (ii) O is the zero matrix, (iii) N
is a p× k matrix, and (iv) A1 is a p× n matrix with rank p, so A1 has full
row rank. (Recall that a basis in an r×s matrix W of rank r is an invertible
r × r submatrix of W .)

(Continued on page 6.)
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5a

Show that B is a basis in A if and only if B has the form

B =

[
M O

N B1

]
where B1 is a basis in A1.

Solution: A is of size (k + p) × (k + n). A basis B in A is obtained
by selecting k + p columns from A such that the corresponding submatrix B
is invertible. We claim that one must choose all the first k columns in A,
otherwise B will not be invertible. In fact, we we choose k′ < k among the
first k columns (of A), then the corresponding submatrix M ′ of M has only
k′ columns that are nonzero. Thus the column rank of M ′ is at most k′, and
since row rank and column rank are the same, the row rank of M ′ is k′. The
row rank of the submatrix of A formed by the p last rows is at most p. Thus,
the rows of B span a subspace of dimension at most p + k′ < p + k. This
shows that we have to choose all the first k columns of A to get a basis. The
remaining p columns are chosen from the remaining columns of A, and this
gives the structure above where B1 is p× p. Finally, if B is a basis, then B1

must be invertible as detB = detA1 · detB1 and both detA1 and detB are
nonzero. Conversely, if B1 is a basis in A1, the same determinant formula,
shows that B is a basis, as desired.

Consider the polyhedron

P = {x ∈ Rk+n : Ax = b, x ≥ O}

where the variable vector x and b may be partitioned as

x =

[
x1

x2

]
, b =

[
b1

b2

]
.

with x1 ∈ Rk, x2 ∈ Rn, b1 ∈ Rk and b2 ∈ Rp.

5b

Find a description of all extreme points of P using the information about A.

Solution: From the notes on convexity we know that x is an extreme point
of P if and only if x is a basic feasible solutions in the system Ax = b. Thus
we need to find all bases in A, and find the corresponding basic solution. For
this we use the property in the previous question and the structure of a basis
B. Using the partitioning of x above, let x21 be the subvector of x2 containing
the components corresponding to the columns selected to form B1. Then the
equation system for finding the basic variables is[

M O

N B1

][
x1

x21

]
=

[
b1

b2

]

which gives x1 = M−1b1 and therefore x21 = B−11 (b2 − NM−1b1). If this
solution is nonnegative it gives a basic feasible solution, and therefore an
extreme point. Conversely, any extreme point has this form.


