UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	MAT-INF3100 — Linear Optimization
Day of examination:	Monday, June 1st, 2015
Examination hours:	09.00-13.00
This problem set consists of 8 pages.	
Appendices:	None
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Consider the LP problem

maximize $-7x_1 + 2x_3$ subject to $- 3x_2 + 4x_3 \leq 1,$ $x_1 - x_2 \leq 2,$ $-3x_1 + x_3 \leq 0,$ $x_1, x_2, x_3 \geq 0.$ (1)

1a

Use the simplex algorithm to find an optimal solution and the accompanying optimal value.

Answer: Initial dictionary

$$\max \eta = -7x_1 + 2x_3,$$

$$w_1 = 1 + 3x_2 - 4x_3,$$

$$w_2 = 2 - x_1 + x_2,$$

$$w_3 = 3x_1 - x_3.$$

We perform a pivot step with x_3 into the basis and w_3 out of the basis (so $x_3 = 3x_1 - w_3$), resulting in the dictionary

$$\max \eta = -x_1 - 2w_3,$$

$$w_1 = 1 - 12x_1 + 3x_2 + 4w_3,$$

$$w_2 = 2 - x_1 + x_2,$$

$$x_3 = 3x_1 - w_3.$$

(2)

An optimal solution is $x_1 = x_2 = w_3 = 0$ and $w_1 = 1$, $w_2 = 2$, $x_3 = 0$. The optimal value is $\eta = 0$.

(Continued on page 2.)

1b

Determine all the optimal solutions of (1).

<u>Answer:</u> In view of (2), there is a whole family of optimal solutions corresponding to the objective value $\eta = 0$, namely $x_1 = 0$, $x_2 = t$ for any number $t \ge 0$, $w_3 = 0$ and $w_1 = 1 + 3t$, $w_2 = 2 + t$, $x_3 = 0$.

1c

Consider the LP problem

minimize
$$y_1 + 2y_2$$

subject to
 $y_2 - 3y_3 \ge -7,$ (3)
 $-3y_1 - y_2 \ge 0,$
 $4y_1 + y_3 \ge 2,$
 $y_1, y_2, y_3 \ge 0.$

Use duality and your findings in (1a) to obtain an optimal solution of (3) and the accompanying optimal value.

<u>Answer:</u> We note that (3) is the dual of (1), to which we can apply the simplex algorithm. The dual variables y_1, y_2, y_3 corresponds to the primal slack variables w_1, w_2, w_3 , while the dual slack variables z_1, z_2, z_3 corresponds to the primal variables x_1, x_2, x_3 . For the primal dictionary (2), the basic variables are w_1, w_2, x_3 , while the nonbasic variables are x_1, x_2, w_3 . For the dual dictionary, the basic variables becomes z_1, z_2, y_3 , while the nonbasic variables becomes y_1, y_2, z_3 . In view of the "negative-transpose property", the dual dictionary reads

$$\min -\xi = -y_1 - 2y_2,$$

$$z_1 = 1 + 12y_1 + y_2 - 3z_3,$$

$$z_2 = -3y_1 - y_2,$$

$$y_3 = 2 - 4y_1 + z_3.$$
(4)

Hence, the optimal solution is $y_1 = 0$, $y_2 = 0$, $z_3 = 0$ and $z_1 = 1$, $z_2 = 0$, $y_3 = 2$. The optimal value is 0.

Problem 2

2a

Consider the (primal) LP problem

$$\max c^T x,$$

subject to $Ax \le b, x \ge 0,$ (5)

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $x, c \in \mathbb{R}^n$.

State the weak and strong duality theorems. Moreover, prove the weak duality theorem.

(Continued on page 3.)

<u>Answer:</u> The dual of (5) is

$$\min b^T y,$$

subject to $A^T y \ge c, y \ge 0.$ (6)

If $x\in\mathbb{R}^n$ is primal feasible and $y\in\mathbb{R}^m$ is dual feasible, then the weak duality theorem states that

$$c^T x \leq b^T y.$$

If the primal problem (5) has an optimal solution x^* , then the dual (6) also has an optimal solution y^* , such that

$$c^T x^{\star} = b^T y^{\star}.$$

The proof of the weak duality theorem proceeds as follows:

$$\sum_{j} c_{j} x_{j} \leq \sum_{j} \left(\sum_{i} y_{i} a_{ij} \right) x_{j}$$
$$= \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i}$$
$$\leq \sum_{i} b_{i} y_{i},$$

where we have used that $x_j \ge 0$ and $c_j \le \sum_i y_i a_{ij}$, and moreover that $y_i \ge 0$ and $b_i \ge \sum_j a_{ij}$.

2b

Let $x = (x_1, x_2, \ldots, x_n)^T$ be primal feasible and $y = (y_1, y_2, \ldots, y_m)^T$ dual feasible. Denote by (w_1, w_2, \ldots, w_m) the corresponding primal slack variables and (z_1, z_2, \ldots, z_n) the corresponding dual slack variables.

Suppose x is optimal for the primal problem and y is optimal for the dual problem. State and prove the complementary slackness equations.

Answer: The complementary slackness equations read

$$x_j z_j = 0, \qquad j = 1, \dots, n$$

and

 $w_i y_i = 0, \qquad i = 1, \dots, m.$

By the proof of the weak duality theorem,

$$\sum_{j} c_{j} x_{j} \leq \sum_{j} \left(\sum_{i} y_{i} a_{ij} \right) x_{j}$$
$$= \sum_{i} \left(\sum_{j} a_{ij} x_{j} \right) y_{i}$$
$$\leq \sum_{i} b_{i} y_{i}.$$

(Continued on page 4.)

The first inequality is actually an equality (due to optimality), and therefore

$$x_j = 0$$
 or $c_j = \sum_i y_i a_{ij}, \quad j = 1, ..., n.$

Since $z_j = \sum_i y_i a_{ij} - c_j$, the last part takes the form $z_j = 0$. Thus, optimality implies $x_j z_j = 0$, for all j.

The second inequality is also an equality (due to optimality), and so

$$\sum_{j} a_{ij} x_j = b_i \quad \text{or} \quad y_i = 0, \qquad i = 1, \dots, m,$$

and, since $w_i = b_i - \sum_j a_{ij} x_j$, the first part takes the form $w_i = 0$. Thus, optimality implies $w_i y_i = 0$, for all *i*.

2c

maximize
$$3x_1 + 2x_2$$

subject to
 $2x_1 + x_2 \leq 4,$ (7)
 $2x_1 + 3x_2 \leq 6,$
 $x_1, x_2 \geq 0.$

Show that $x^* = (3/2, 1)$ is primal feasible and $y^* = (5/4, 1/4)$ is dual feasible. Moreover, show that x^* is in fact an optimal solution of (7).

<u>Answer:</u> The dual of (7) is

min
$$4y_1 + 6y_2,$$

subject to
 $2y_1 + 2y_2 \ge 3,$ (8)
 $y_1 + 3y_2 \ge 2,$
 $y_1, y_2 \ge 0.$

Straightforward computations reveal that $x^* = (3/2, 1)$ and $y^* = (5/4, 1/4)$ satisfy their respective constraints:

$$2 * 3/2 + 1 = 4,$$
 $2 * 3/2 + 3 * 1 = 6$

and

$$2 * 5/4 + 2 * 1/4 = 12/4 = 3, \qquad 5/4 + 3 * 1/4 = 8/4 = 2.$$

Moreover, the objective function values $\eta^{\star}, \xi^{\star}$ of the primal and dual problems coincide:

$$\eta^{\star} := 3 * 3/2 + 2 * 1 = 13/2$$

and

$$\xi^* := 4 * 5/4 + 6 * 1/4 = 26/4 = 13/2.$$

We then conclude by the weak duality theorem that x^* and y^* are optimal in their respective problems. 2d

Consider the LP problem

$$\max c^T x,$$

subject to $Ax = b, x \ge 0,$ (9)

where the linear constraints are equalities. Show that the dual of (9) is

$$\min b^T y,$$

subject to $A^T y \ge c.$ (10)

<u>Answer:</u> First, we write the equality constraint as inequality constraints:

$$\max c^T x,$$

subject to $Ax \le b, -Ax \le -b, x \ge 0,$

or, in terms of partitioned matrices,

$$\max c^T x, \\ \begin{pmatrix} A & 0 \\ 0 & -A \end{pmatrix} x \le \begin{pmatrix} b \\ -b \end{pmatrix}, \\ x \ge 0.$$

Given this LP problem in standard form, we can write down its dual, using two duality variables (vectors) y^+ and y^- :

$$\min b^T y^+ - b^T y^-,$$

subject to $A^T y^+ - A^T y^- \ge c, \quad y^+, y^- \ge 0.$

If we set $y := y^+ - y^-$ (y is not necessarily nonnegative), the dual problem of (9) becomes

$$\min b^T y$$
, subject to $A^T y \ge c$.

Problem 3

3a

Consider the LP problem

$$\max \sum_{j=1}^{n} c_j x_j,$$

subject to
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad i = 1, \dots, m,$$

$$x_j \ge 0, \quad j = 1, \dots, n,$$

(11)

where c_j, a_{ij}, b_i are given numbers.

(Continued on page 6.)

Introduce slack variables and identify vectors x, c, b and a matrix A such that (11) can be written as

$$\max c^T x,$$

subject to $Ax = b, x \ge 0.$ (12)

Answer: Introduce the slack variables:

$$x_{n+i} = b_i - \sum_{j=1}^n a_{ij} x_j, \qquad i = 1, \dots, m,$$

and write

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ x_{n+1} \\ \vdots \\ x_{n+m} \end{pmatrix} \mathbb{R}^{m+n}.$$

Take $A = \begin{bmatrix} \overline{A} & I \end{bmatrix}$, where I is the $m \times m$ identity matrix and

$$\bar{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \in \mathbb{R}^{m \times n}.$$

Moreover, take

$$c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \bar{c} \\ 0 \end{pmatrix} \in \mathbb{R}^{m+n}$$

and

$$b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^m.$$

Then (11) can be written in the form (12).

3b

In the simplex algorithm denote by \mathcal{B} the set of indices corresponding to the basic variables, and by \mathcal{N} the remaining nonbasic indices.

Let B denote an invertible $m \times m$ matrix whose columns consist of the m columns of A associated with the basic variables. Similarly, denote by N an $m \times n$ matrix whose columns are the n nonbasic columns of A.

Assume that A can be partitioned as

$$A = \begin{bmatrix} B & N \end{bmatrix},$$

and that c and x can be partitioned similarly as

$$c = \begin{pmatrix} c_{\mathcal{B}} \\ c_{\mathcal{N}} \end{pmatrix}, \qquad x = \begin{pmatrix} x_{\mathcal{B}} \\ x_{\mathcal{N}} \end{pmatrix}.$$

Show that the dictionary associated with the basis $\mathcal B$ can be written as

$$\eta = \eta^* - z_{\mathcal{N}}^{*T} x_{\mathcal{N}},$$
$$x_{\mathcal{B}} = x_{\mathcal{B}}^* - B^{-1} N x_{\mathcal{N}},$$

where

$$\eta^* = c_{\mathcal{B}}^T B^{-1} b, \quad z_{\mathcal{N}}^* = (B^{-1}N)^T c_{\mathcal{B}} - c_{\mathcal{N}}, \quad x_{\mathcal{B}}^* = B^{-1} b$$

What is the (primal) basic solution and objective value associated with this dictionary?

<u>Answer:</u> From the constraints Ax = b it follows that

$$Bx_{\mathcal{B}} + Nx_{\mathcal{N}} = b,$$

and this gives the result for $x_{\mathcal{B}}$ since

$$x_{\mathcal{B}} = B^{-1} (b - N x_{\mathcal{N}}) = B^{-1} b - B^{-1} N x_{\mathcal{N}}.$$

Regarding the objective function,

$$\eta = c^T x = c_{\mathcal{B}}^T x_{\mathcal{B}} + c_{\mathcal{N}}^T x_{\mathcal{N}}$$
$$= c_{\mathcal{B}}^T \left(B^{-1} b - B^{-1} N x_{\mathcal{N}} \right) + c_{\mathcal{N}}^T x_{\mathcal{N}}$$
$$= c_{\mathcal{B}}^T B^{-1} b - c_{\mathcal{B}}^T B^{-1} N x_{\mathcal{N}} + c_{\mathcal{N}}^T x_{\mathcal{N}}$$
$$= c_{\mathcal{B}}^T B^{-1} b - \left((B^{-1} N)^T c_{\mathcal{B}} - c_{\mathcal{N}} \right)^T x_{\mathcal{N}}.$$

The basic solution is obtained by setting $x_{\mathcal{N}} = 0$, which gives

$$x_{\mathcal{N}}^* = 0, \qquad x_{\mathcal{B}}^* = x_{\mathcal{B}}^*, \qquad \eta^* = \eta^*.$$

3c

Consider the LP problem

$$\begin{array}{ll} \max & 5x_1 + 4x_2 + 3x_3, \\ \text{subject to} & \\ & 2x_1 + 3x_2 + x_3 \leq 5, \\ & 4x_1 + x_2 + 2x_3 \leq 11, \\ & 3x_1 + 4x_2 + 2x_3 \leq 8, \\ & x_1, x_2, x_3 \geq 0. \end{array}$$

(Continued on page 8.)

It turns out the optimal dictionary for this problem is

$$\max \eta = 13 - 3x_2 - x_4 - x_6$$

$$x_3 = 1 + x_2 + 3x_4 - 2x_6,$$

$$x_1 = 2 - 2x_2 - 2x_4 + x_6,$$

$$x_5 = 1 + 5x_2 + 2x_4.$$

For this dictionary, identify $\mathcal{B}, \mathcal{N}, \eta^*, x^*_{\mathcal{B}}, B^{-1}N, z^*_{\mathcal{N}}$. Suppose the coefficient of 4 on x_2 in the objective function is changed to 4 + t for some number t > 0. How large can t be chosen without sacrificing the optimality of the dictionary?

<u>Answer:</u> We read off the dictionary:

$$\mathcal{B} = \{3, 1, 5\}, \qquad \mathcal{N} = \{2, 4, 6\},$$

$$\eta^* = 13, \qquad x_{\mathcal{B}}^* = \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \\ B^{-1}N = \begin{pmatrix} -1 & -3 & 2\\2 & 2 & -1\\-5 & -2 & 0 \end{pmatrix}, \qquad z_{\mathcal{N}}^* = \begin{pmatrix} 3\\1\\1 \end{pmatrix}.$$

Next, changing 4 to 4+t changes $z^*_{\mathcal{N}}$ to

$$\bar{z}_{\mathcal{N}}^* := z_{\mathcal{N}}^* - t \begin{pmatrix} 1\\0\\0 \end{pmatrix},$$

while the other quantities remain unchanged. To ensure the optimality of dictionary t must be chosen such that $\bar{z}^*_{\mathcal{N}} \ge 0 \iff 3-t \ge 0$, i.e.,

 $t \leq 3.$

THE END