UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3100 - Linear Optimization
Day of examination: Monday, June 1st, 2015
Examination hours: $09.00-13.00$
This problem set consists of 8 pages.
Appendices:
None
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Consider the LP problem

$$
\begin{align*}
& \operatorname{maximize} \quad-7 x_{1} \quad+2 x_{3} \\
& \text { subject to } \\
& \begin{aligned}
-3 x_{2}+4 x_{3} & \leq 1 \\
x_{1}-x_{2} & \leq 2 \\
-3 x_{1} & \\
& \leq x_{3}
\end{aligned} \tag{1}
\end{align*}
$$

$1 \mathbf{a}$

Use the simplex algorithm to find an optimal solution and the accompanying optimal value.

Answer: Initial dictionary

$$
\begin{aligned}
& \max \eta=-7 x_{1}+2 x_{3} \\
& w_{1}=1+3 x_{2}-4 x_{3} \\
& w_{2}=2-x_{1}+x_{2} \\
& w_{3}=3 x_{1}-x_{3}
\end{aligned}
$$

We perform a pivot step with x_{3} into the basis and w_{3} out of the basis (so $x_{3}=3 x_{1}-w_{3}$), resulting in the dictionary

$$
\begin{align*}
& \max \eta=-x_{1}-2 w_{3} \\
& w_{1}=1-12 x_{1}+3 x_{2}+4 w_{3} \tag{2}\\
& w_{2}=2-x_{1}+x_{2} \\
& x_{3}=3 x_{1}-w_{3}
\end{align*}
$$

An optimal solution is $x_{1}=x_{2}=w_{3}=0$ and $w_{1}=1, w_{2}=2, x_{3}=0$. The optimal value is $\eta=0$.
(Continued on page 2.)

1b

Determine all the optimal solutions of (1).

Answer: In view of (2), there is a whole family of optimal solutions corresponding to the objective value $\eta=0$, namely $x_{1}=0, x_{2}=t$ for any number $t \geq 0, w_{3}=0$ and $w_{1}=1+3 t, w_{2}=2+t, x_{3}=0$.

1c

Consider the LP problem

$$
\begin{align*}
& \operatorname{minimize} \quad y_{1}+2 y_{2} \\
& \text { subject to } \\
& \begin{aligned}
y_{2}-3 y_{3} & \geq-7, \\
-3 y_{1}-y_{2} & \geq 0, \\
4 y_{1} & \\
& y_{3}
\end{aligned} \begin{aligned}
& \geq 2, \\
y_{1}, y_{2}, y_{3} & \geq 0 .
\end{aligned} \tag{3}
\end{align*}
$$

Use duality and your findings in (1a) to obtain an optimal solution of (3) and the accompanying optimal value.

Answer: We note that (3) is the dual of (1), to which we can apply the simplex algortihm. The dual variables y_{1}, y_{2}, y_{3} corresponds to the primal slack variables w_{1}, w_{2}, w_{3}, while the dual slack variables z_{1}, z_{2}, z_{3} corresponds to the primal variables x_{1}, x_{2}, x_{3}. For the primal dictionary (2), the basic variables are w_{1}, w_{2}, x_{3}, while the nonbasic variables are x_{1}, x_{2}, w_{3}. For the dual dictionary, the basic variables becomes z_{1}, z_{2}, y_{3}, while the nonbasic variables becomes y_{1}, y_{2}, z_{3}. In view of the "negative-transpose property", the dual dictionary reads

$$
\begin{align*}
& \min -\xi=-y_{1}-2 y_{2}, \\
& z_{1}=1+12 y_{1}+y_{2}-3 z_{3}, \\
& z_{2}=-3 y_{1}-y_{2}, \tag{4}\\
& y_{3}=2-4 y_{1}+z_{3} .
\end{align*}
$$

Hence, the optimal solution is $y_{1}=0, y_{2}=0, z_{3}=0$ and $z_{1}=1, z_{2}=0$, $y_{3}=2$. The optimal value is 0 .

Problem 2

2a

Consider the (primal) LP problem

$$
\begin{align*}
& \max c^{T} x \\
& \text { subject to } A x \leq b, x \geq 0, \tag{5}
\end{align*}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, and $x, c \in \mathbb{R}^{n}$.
State the weak and strong duality theorems. Moreover, prove the weak duality theorem.

Answer: The dual of (5) is

$$
\begin{align*}
& \min b^{T} y \\
& \text { subject to } A^{T} y \geq c, y \geq 0 \tag{6}
\end{align*}
$$

If $x \in \mathbb{R}^{n}$ is primal feasible and $y \in \mathbb{R}^{m}$ is dual feasible, then the weak duality theorem states that

$$
c^{T} x \leq b^{T} y
$$

If the primal problem (5) has an optimal solution x^{\star}, then the dual (6) also has an optimal solution y^{\star}, such that

$$
c^{T} x^{\star}=b^{T} y^{\star}
$$

The proof of the weak duality theorem proceeds as follows:

$$
\begin{aligned}
\sum_{j} c_{j} x_{j} & \leq \sum_{j}\left(\sum_{i} y_{i} a_{i j}\right) x_{j} \\
& =\sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) y_{i} \\
& \leq \sum_{i} b_{i} y_{i}
\end{aligned}
$$

where we have used that $x_{j} \geq 0$ and $c_{j} \leq \sum_{i} y_{i} a_{i j}$, and moreover that $y_{i} \geq 0$ and $b_{i} \geq \sum_{j} a_{i j}$.

2b

Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be primal feasible and $y=\left(y_{1}, y_{2}, \ldots, y_{m}\right)^{T}$ dual feasible. Denote by $\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ the corresponding primal slack variables and $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ the corresponding dual slack variables.

Suppose x is optimal for the primal problem and y is optimal for the dual problem. State and prove the complementary slackness equations.

Answer: The complementary slackness equations read

$$
x_{j} z_{j}=0, \quad j=1, \ldots, n
$$

and

$$
w_{i} y_{i}=0, \quad i=1, \ldots, m
$$

By the proof of the weak duality theorem,

$$
\begin{aligned}
\sum_{j} c_{j} x_{j} & \leq \sum_{j}\left(\sum_{i} y_{i} a_{i j}\right) x_{j} \\
& =\sum_{i}\left(\sum_{j} a_{i j} x_{j}\right) y_{i} \\
& \leq \sum_{i} b_{i} y_{i} .
\end{aligned}
$$

The first inequality is actually an equality (due to optimality), and therefore

$$
x_{j}=0 \quad \text { or } \quad c_{j}=\sum_{i} y_{i} a_{i j}, \quad j=1, \ldots, n .
$$

Since $z_{j}=\sum_{i} y_{i} a_{i j}-c_{j}$, the last part takes the form $z_{j}=0$. Thus, optimality implies $x_{j} z_{j}=0$, for all j.

The second inequality is also an equality (due to optimality), and so

$$
\sum_{j} a_{i j} x_{j}=b_{i} \quad \text { or } \quad y_{i}=0, \quad i=1, \ldots, m
$$

and, since $w_{i}=b_{i}-\sum_{j} a_{i j} x_{j}$, the first part takes the form $w_{i}=0$. Thus, optimality implies $w_{i} y_{i}=0$, for all i.

2c

$$
\begin{array}{ll}
\operatorname{maximize} & 3 x_{1}+2 x_{2} \\
\text { subject to } & \\
& 2 x_{1}+x_{2} \leq 4, \tag{7}\\
& 2 x_{1}+3 x_{2} \leq 6, \\
& x_{1}, x_{2}
\end{array} \geq 0 .
$$

Show that $x^{\star}=(3 / 2,1)$ is primal feasible and $y^{\star}=(5 / 4,1 / 4)$ is dual feasible. Moreover, show that x^{\star} is in fact an optimal solution of (7).

Answer: The dual of (7) is

$$
\begin{array}{ll}
\min & 4 y_{1}+6 y_{2}, \\
\text { subject to } \\
& 2 y_{1}+2 y_{2} \geq 3, \tag{8}\\
& y_{1}+3 y_{2} \geq 2, \\
& y_{1}, y_{2} \geq 0 .
\end{array}
$$

Straightforward computations reveal that $x^{\star}=(3 / 2,1)$ and $y^{\star}=(5 / 4,1 / 4)$ satisfy their respective constraints:

$$
2 * 3 / 2+1=4, \quad 2 * 3 / 2+3 * 1=6
$$

and

$$
2 * 5 / 4+2 * 1 / 4=12 / 4=3, \quad 5 / 4+3 * 1 / 4=8 / 4=2 .
$$

Moreover, the objective function values $\eta^{\star}, \xi^{\star}$ of the primal and dual problems coincide:

$$
\eta^{\star}:=3 * 3 / 2+2 * 1=13 / 2
$$

and

$$
\xi^{\star}:=4 * 5 / 4+6 * 1 / 4=26 / 4=13 / 2 .
$$

We then conclude by the weak duality theorem that x^{\star} and y^{\star} are optimal in their respective problems.

2d

Consider the LP problem

$$
\begin{align*}
& \max c^{T} x \\
& \text { subject to } A x=b, x \geq 0 \tag{9}
\end{align*}
$$

where the linear constraints are equalities. Show that the dual of (9) is

$$
\begin{align*}
& \min b^{T} y \\
& \text { subject to } A^{T} y \geq c \tag{10}
\end{align*}
$$

Answer: First, we write the equality constraint as inequality constraints:

$$
\begin{aligned}
& \max c^{T} x \\
& \text { subject to } A x \leq b,-A x \leq-b, x \geq 0
\end{aligned}
$$

or, in terms of partitioned matrices,

$$
\begin{aligned}
& \max c^{T} x \\
& \left(\begin{array}{cc}
A & 0 \\
0 & -A
\end{array}\right) x \leq\binom{ b}{-b} \\
& x \geq 0
\end{aligned}
$$

Given this LP problem in standard form, we can write down its dual, using two duality variables (vectors) y^{+}and y^{-}:

$$
\begin{aligned}
& \min b^{T} y^{+}-b^{T} y^{-} \\
& \text {subject to } A^{T} y^{+}-A^{T} y^{-} \geq c, \quad y^{+}, y^{-} \geq 0
\end{aligned}
$$

If we set $y:=y^{+}-y^{-}(y$ is not necessarily nonnegative $)$, the dual problem of (9) becomes

$$
\min b^{T} y, \quad \text { subject to } A^{T} y \geq c
$$

Problem 3

3a

Consider the LP problem

$$
\begin{align*}
& \max \sum_{j=1}^{n} c_{j} x_{j}, \\
& \text { subject to } \tag{11}\\
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1, \ldots, m, \\
& x_{j} \geq 0, \quad j=1, \ldots, n,
\end{align*}
$$

where $c_{j}, a_{i j}, b_{i}$ are given numbers.
(Continued on page 6.)

Introduce slack variables and identify vectors x, c, b and a matrix A such that (11) can be written as

$$
\begin{align*}
& \max c^{T} x \\
& \text { subject to } A x=b, x \geq 0 \tag{12}
\end{align*}
$$

Answer: Introduce the slack variables:

$$
x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1, \ldots, m
$$

and write

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n} \\
x_{n+1} \\
\vdots \\
x_{n+m}
\end{array}\right) \mathbb{R}^{m+n}
$$

Take $A=\left[\begin{array}{ll}\bar{A} & I\end{array}\right]$, where I is the $m \times m$ identity matrix and

$$
\bar{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

Moreover, take

$$
c=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n} \\
0 \\
\vdots \\
0
\end{array}\right)=\binom{\bar{c}}{0} \in \mathbb{R}^{m+n}
$$

and

$$
b=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right) \in \mathbb{R}^{m}
$$

Then (11) can be written in the form (12).

3b

In the simplex algorithm denote by \mathcal{B} the set of indices corresponding to the basic variables, and by \mathcal{N} the remaining nonbasic indices.

Let B denote an invertible $m \times m$ matrix whose columns consist of the m columns of A associated with the basic variables. Similarly, denote by N an $m \times n$ matrix whose columns are the n nonbasic columns of A.

Assume that A can be partitioned as

$$
A=\left[\begin{array}{ll}
B & N
\end{array}\right],
$$

and that c and x can be partitioned similarly as

$$
c=\binom{c_{\mathcal{B}}}{c_{\mathcal{N}}}, \quad x=\binom{x_{\mathcal{B}}}{x_{\mathcal{N}}} .
$$

Show that the dictionary associated with the basis \mathcal{B} can be written as

$$
\begin{aligned}
& \eta=\eta^{*}-z_{\mathcal{N}}^{* T} x_{\mathcal{N}}, \\
& x_{\mathcal{B}}=x_{\mathcal{B}}^{*}-B^{-1} N x_{\mathcal{N}},
\end{aligned}
$$

where

$$
\eta^{*}=c_{\mathcal{B}}^{T} B^{-1} b, \quad z_{\mathcal{N}}^{*}=\left(B^{-1} N\right)^{T} c_{\mathcal{B}}-c_{\mathcal{N}}, \quad x_{\mathcal{B}}^{*}=B^{-1} b .
$$

What is the (primal) basic solution and objective value associated with this dictionary?

Answer: From the constraints $A x=b$ it follows that

$$
B x_{\mathcal{B}}+N x_{\mathcal{N}}=b,
$$

and this gives the result for $x_{\mathcal{B}}$ since

$$
x_{\mathcal{B}}=B^{-1}\left(b-N x_{\mathcal{N}}\right)=B^{-1} b-B^{-1} N x_{\mathcal{N}} .
$$

Regarding the objective function,

$$
\begin{aligned}
\eta=c^{T} x & =c_{\mathcal{B}}^{T} x_{\mathcal{B}}+c_{\mathcal{N}}^{T} x_{\mathcal{N}} \\
& =c_{\mathcal{B}}^{T}\left(B^{-1} b-B^{-1} N x_{\mathcal{N}}\right)+c_{\mathcal{N}}^{T} x_{\mathcal{N}} \\
& =c_{\mathcal{B}}^{T} B^{-1} b-c_{\mathcal{B}}^{T} B^{-1} N x_{\mathcal{N}}+c_{\mathcal{N}}^{T} x_{\mathcal{N}} \\
& =c_{\mathcal{B}}^{T} B^{-1} b-\left(\left(B^{-1} N\right)^{T} c_{\mathcal{B}}-c_{\mathcal{N}}\right)^{T} x_{\mathcal{N}} .
\end{aligned}
$$

The basic solution is obtained by setting $x_{\mathcal{N}}=0$, which gives

$$
x_{\mathcal{N}}^{*}=0, \quad x_{\mathcal{B}}^{*}=x_{\mathcal{B}}^{*}, \quad \eta^{*}=\eta^{*} .
$$

3c
Consider the LP problem

$$
\begin{array}{ll}
\max & 5 x_{1}+4 x_{2}+3 x_{3}, \\
\text { subject to } & \\
& 2 x_{1}+3 x_{2}+x_{3} \leq 5, \\
& 4 x_{1}+x_{2}+2 x_{3} \leq 11, \\
& 3 x_{1}+4 x_{2}+2 x_{3} \leq 8, \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{array}
$$

It turns out the optimal dictionary for this problem is

$$
\begin{aligned}
& \max \eta=13-3 x_{2}-x_{4}-x_{6}, \\
& x_{3}=1+x_{2}+3 x_{4}-2 x_{6}, \\
& x_{1}=2-2 x_{2}-2 x_{4}+x_{6}, \\
& x_{5}=1+5 x_{2}+2 x_{4} .
\end{aligned}
$$

For this dictionary, identify $\mathcal{B}, \mathcal{N}, \eta^{*}, x_{\mathcal{B}}^{*}, B^{-1} N, z_{\mathcal{N}}^{*}$.
Suppose the coefficient of 4 on x_{2} in the objective function is changed to $4+t$ for some number $t>0$. How large can t be chosen without sacrificing the optimality of the dictionary?

Answer: We read off the dictionary:

$$
\begin{aligned}
& \mathcal{B}=\{3,1,5\}, \quad \mathcal{N}=\{2,4,6\}, \\
& \eta^{*}=13, \quad x_{\mathcal{B}}^{*}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right), \\
& B^{-1} N=\left(\begin{array}{ccc}
-1 & -3 & 2 \\
2 & 2 & -1 \\
-5 & -2 & 0
\end{array}\right), \quad z_{\mathcal{N}}^{*}=\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right) .
\end{aligned}
$$

Next, changing 4 to $4+t$ changes $z_{\mathcal{N}}^{*}$ to

$$
\bar{z}_{\mathcal{N}}^{*}:=z_{\mathcal{N}}^{*}-t\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

while the other quantities remain unchanged. To ensure the optimality of dictionary t must be chosen such that $\bar{z}_{\mathcal{N}}^{*} \geq 0 \Longleftrightarrow 3-t \geq 0$, i.e.,

$$
t \leq 3
$$

