UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3100 - Linear Optimization
Day of examination: Monday, June 6th, 2016
Examination hours: $14.30-18.30$
This problem set consists of 3 pages.
Appendices:
None
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

1a
Consider the LP problem

$$
\begin{align*}
& \operatorname{maximize}-x_{1}+3 x_{2}+2 x_{3} \\
& \text { subject to } \\
& -x_{1}+x_{2}+2 x_{3} \leq 2 \\
& -3 x_{1}+2 x_{2}+x_{3} \leq 1 \tag{1}\\
& 8 x_{1}-3 x_{2}+2 x_{3} \leq 2 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{align*}
$$

Use the simplex algorithm to find the optimal solution.

1b

Determine the dual problem of (1). Moreover, find an optimal solution of the dual problem.

1c
Consider the primal problem

$$
\begin{align*}
& \operatorname{maximize} 3 x_{1}+2 x_{2}+x_{3} \\
& \text { subject to } \\
& x_{1}-x_{2}+x_{3} \leq 4, \\
& 2 x_{1}+x_{2}+3 x_{3} \leq 6, \tag{2}\\
& -x_{1}+2 x_{3} \leq 3 \\
& x_{1}+x_{2}+x_{3} \leq 8, \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{align*}
$$

and the corresponding dual problem

$$
\begin{align*}
& \operatorname{minimize} 4 y_{1}+6 y_{2}+3 y_{3}+8 y_{4} \\
& \text { subject to } \\
& y_{1}+2 y_{2}-y_{3}+y_{4} \geq 3 \\
& -y_{1}+y_{2}+y_{4} \geq 2 \tag{3}\\
& y_{1}+3 y_{2}+2 y_{3}+y_{4} \geq 1 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{align*}
$$

State the complementary slackness conditions for optimality of a feasible solution $x \in \mathbb{R}^{3}$ of the primal problem (2) and a feasible solution $y \in \mathbb{R}^{4}$ of the dual problem (3).

1d

Suppose $\left(x_{1}, x_{2}, x_{3}\right)=(0,6,0)$ is optimal for the primal problem (2). Use the complementary slackness conditions to solve the dual problem.

Problem 2

A company produces food products A and B using machines M_{1} and M_{2}. One ton of product A requires 1 hour of processing on machine M_{1} and 2 hours on machine M_{2}. One ton of product B requires 3 hours of processing on M_{1} and 1 hour on M_{2}. Each day machine M_{1} has available 9 hours of processing time, while machine M_{2} has available 8 hours. Each ton of product produced (of either type) yields $\$ 1$ million profit.

2a

The problem is to decide how much of each food product should the company make per day to maximize profit. Formulate this optimization problem as a linear programming problem. Graph the feasible region F.

2b

Define what it means for a set $C \subset \mathbb{R}^{n}(n \geq 1)$ to be convex. Given a set $P \subset \mathbb{R}^{n}$, define the convex hull of $P, \operatorname{conv}(P)$. What is a polytope?

2c

Identify four extreme points $p_{1}, p_{2}, p_{3}, p_{4}$ such that the feasible region F in 2a can be written as conv ($\left.\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}\right)$. A known theorem states that $x \in F$ is a basic solution (in the LP sense) if and only if x is an extreme point of F. Use this to determine the optimal (basic) solution to the linear programming problem formulated in 2a.

Problem 3

3a

Consider a general game defined by a matrix $A=\left\{a_{i, j}\right\}_{i, j} \in \mathbb{R}^{m \times n}$, $i=1, \ldots, m, j=1, \ldots, n$. What do we mean by (pure) minmax and maxmin strategies and the game's value?

Determine the minmax and maxmin strategies and value for the game given by

$$
A=\left(\begin{array}{cccc}
2 & 8 & 6 & 11 \tag{4}\\
2 & 3 & 4 & 2 \\
1 & 1 & 5 & 4
\end{array}\right) \in \mathbb{R}^{3 \times 4}
$$

3b

Consider a game given by a matrix $A=\left\{a_{i, j}\right\} \in \mathbb{R}^{m \times n}$. Explain (define) what we mean by a saddle point. Using the definition of a saddle point, verify that the strategies found in $\mathbf{3 a}$ for (4) constitute a saddle point.

3c

Given a general matrix game defined by $A=\left\{a_{i, j}\right\} \in \mathbb{R}^{m \times n}$, suppose the row player R has a pure minmax strategy r, the column player K has a pure maxmin strategy s, and that the game has a value V. Show that (r, s) is a saddle point and that the value of the game is $V=a_{r, s}$.

