UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3100 — Linear Optimization

Day of examination: Monday, June 6th, 2016

Examination hours: 14.30 – 18.30

This problem set consists of 3 pages.

Appendices: None

Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

1a

Consider the LP problem

maximize
$$-x_1 + 3x_2 + 2x_3$$

subject to
 $-x_1 + x_2 + 2x_3 \le 2$,
 $-3x_1 + 2x_2 + x_3 \le 1$,
 $8x_1 - 3x_2 + 2x_3 \le 2$,
 $x_1, x_2, x_3 \ge 0$. (1)

Use the simplex algorithm to find the optimal solution.

1b

Determine the dual problem of (1). Moreover, find an optimal solution of the dual problem.

1c

Consider the primal problem

maximize
$$3x_1 + 2x_2 + x_3$$

subject to
 $x_1 - x_2 + x_3 \le 4$,
 $2x_1 + x_2 + 3x_3 \le 6$,
 $-x_1 + 2x_3 \le 3$,
 $x_1 + x_2 + x_3 \le 8$,
 $x_1, x_2, x_3 \ge 0$, (2)

(Continued on page 2.)

and the corresponding dual problem

minimize
$$4y_1 + 6y_2 + 3y_3 + 8y_4$$

subject to

$$y_1 + 2y_2 - y_3 + y_4 \ge 3,$$

$$-y_1 + y_2 + y_4 \ge 2,$$

$$y_1 + 3y_2 + 2y_3 + y_4 \ge 1,$$

$$y_1, y_2, y_3 \ge 0.$$
(3)

State the complementary slackness conditions for optimality of a feasible solution $x \in \mathbb{R}^3$ of the primal problem (2) and a feasible solution $y \in \mathbb{R}^4$ of the dual problem (3).

1d

Suppose $(x_1, x_2, x_3) = (0, 6, 0)$ is optimal for the primal problem (2). Use the complementary slackness conditions to solve the dual problem.

Problem 2

A company produces food products A and B using machines M_1 and M_2 . One ton of product A requires 1 hour of processing on machine M_1 and 2 hours on machine M_2 . One ton of product B requires 3 hours of processing on M_1 and 1 hour on M_2 . Each day machine M_1 has available 9 hours of processing time, while machine M_2 has available 8 hours. Each ton of product produced (of either type) yields \$1 million profit.

2a

The problem is to decide how much of each food product should the company make per day to maximize profit. Formulate this optimization problem as a linear programming problem. Graph the feasible region F.

2b

Define what it means for a set $C \subset \mathbb{R}^n$ $(n \ge 1)$ to be convex. Given a set $P \subset \mathbb{R}^n$, define the convex hull of P, conv(P). What is a polytope?

2c

Identify four extreme points p_1, p_2, p_3, p_4 such that the feasible region F in $\mathbf{2a}$ can be written as conv $(\{p_1, p_2, p_3, p_4\})$. A known theorem states that $x \in F$ is a basic solution (in the LP sense) if and only if x is an extreme point of F. Use this to determine the optimal (basic) solution to the linear programming problem formulated in $\mathbf{2a}$.

Problem 3

3a

Consider a general game defined by a matrix $A = \{a_{i,j}\}_{i,j} \in \mathbb{R}^{m \times n}$, i = 1, ..., m, j = 1, ..., n. What do we mean by (pure) minmax and maxmin strategies and the game's value?

Determine the minmax and maxmin strategies and value for the game given by

$$A = \begin{pmatrix} 2 & 8 & 6 & 11 \\ 2 & 3 & 4 & 2 \\ 1 & 1 & 5 & 4 \end{pmatrix} \in \mathbb{R}^{3 \times 4}.$$
 (4)

3b

Consider a game given by a matrix $A = \{a_{i,j}\} \in \mathbb{R}^{m \times n}$. Explain (define) what we mean by a saddle point. Using the definition of a saddle point, verify that the strategies found in **3a** for (4) constitute a saddle point.

3c

Given a general matrix game defined by $A = \{a_{i,j}\} \in \mathbb{R}^{m \times n}$, suppose the row player R has a pure minmax strategy r, the column player K has a pure maxmin strategy s, and that the game has a value V. Show that (r, s) is a saddle point and that the value of the game is $V = a_{r,s}$.

THE END