UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in: MAT-INF3100 - Linear Optimization
Day of examination: Monday, June 6th, 2016
Examination hours: 14.30-18.30
This problem set consists of 6 pages.

Appendices:
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

1a
Consider the LP problem

$$
\begin{align*}
& \operatorname{maximize}-x_{1}+3 x_{2}+2 x_{3} \\
& \text { subject to } \\
& -x_{1}+x_{2}+2 x_{3} \leq 2 \\
& -3 x_{1}+2 x_{2}+x_{3} \leq 1 \tag{1}\\
& 8 x_{1}-3 x_{2}+2 x_{3} \leq 2 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{align*}
$$

Use the simplex algorithm to find the optimal solution.

Answer: Initial dictionary

$$
\begin{aligned}
& \max \eta=-x_{1}+3 x_{2}+2 x_{3} \\
& w_{1}=2+x_{1}-x_{2}-2 x_{3} \\
& w_{2}=1+3 x_{1}-2 x_{2}-x_{3} \\
& w_{3}=2-8 x_{1}+3 x_{2}-2 x_{3}
\end{aligned}
$$

We perform a pivot step with x_{2} into the basis and w_{2} out of the basis (so $x_{2}=\frac{1}{2}+\frac{3}{2} x_{1}-\frac{1}{2} x_{3}-\frac{1}{2} w_{2}$), resulting in the dictionary

$$
\begin{aligned}
& \max \eta=\frac{3}{2}+\frac{7}{2} x_{1}+\frac{1}{2} x_{3}-\frac{3}{2} w_{2} \\
& w_{1}=\frac{3}{2}-\frac{1}{2} x_{1}-\frac{3}{2} x_{3}+\frac{1}{2} w_{2} \\
& x_{2}=\frac{1}{2}+\frac{3}{2} x_{1}-\frac{1}{2} x_{3}-\frac{1}{2} w_{2} \\
& w_{3}=\frac{7}{2}-\frac{7}{2} x_{1}-\frac{7}{2} x_{3}-\frac{3}{2} w_{2}
\end{aligned}
$$

We perform a pivot step with x_{1} into the basis and w_{3} out of the basis (so $x_{1}=1-x_{3}-\frac{3}{7} w_{2}-\frac{2}{7} w_{3}$), resulting in the dictionary

$$
\begin{align*}
& \max \eta=5-3 x_{3}-3 w_{2}-w_{3}, \\
& w_{1}=1-x_{3}+\frac{10}{14} w_{2}+\frac{1}{7} w_{3}, \tag{2}\\
& x_{2}=2-2 x_{3}-\frac{8}{7} w_{2}-\frac{3}{7} w_{3}, \\
& x_{1}=1-x_{3}-\frac{3}{7} w_{2}-\frac{2}{7} w_{3} .
\end{align*}
$$

This is an optimal dictionary. The optimal solution is

$$
\left(x_{1}, x_{2}, x_{3}\right)=(1,2,0),
$$

with corresponding optimal value 5 .

1b

Determine the dual problem of (1). Moreover, find an optimal solution of the dual problem.

Answer: The dual problem reads

$$
\begin{align*}
& \operatorname{minimize} 2 y_{1}+y_{2}+2 y_{3} \\
& \text { subject to } \\
& -y_{1}-3 y_{2}+8 y_{3} \geq-1, \\
& y_{1}+2 y_{2}-3 y_{3} \geq 3, \tag{3}\\
& 2 y_{1}+y_{2}+2 y_{3} \geq 2, \\
& y_{1}, y_{2}, y_{3} \geq 0 .
\end{align*}
$$

Using the "negative transpose property" (complementarity between x_{j} and z_{j} and between y_{i} and w_{i}), we read off the dual solution from the optimal dictionary (2) for the primal problem. The optimal dual solution is

$$
\left(y_{1}, y_{2}, y_{3}\right)=(0,3,1),
$$

with dual objective value is 5 .

1c

Consider the primal problem

$$
\begin{align*}
& \operatorname{maximize} 3 x_{1}+2 x_{2}+x_{3} \\
& \text { subject to } \\
& x_{1}-x_{2}+x_{3} \leq 4, \\
& 2 x_{1}+x_{2}+3 x_{3} \leq 6, \tag{4}\\
& -x_{1}+2 x_{3} \leq 3, \\
& x_{1}+x_{2}+x_{3} \leq 8, \\
& x_{1}, x_{2}, x_{3} \geq 0,
\end{align*}
$$

and the corresponding dual problem

$$
\begin{align*}
& \operatorname{minimize} 4 y_{1}+6 y_{2}+3 y_{3}+8 y_{4} \\
& \text { subject to } \\
& y_{1}+2 y_{2}-y_{3}+y_{4} \geq 3 \\
& -y_{1}+y_{2}+y_{4} \geq 2 \tag{5}\\
& y_{1}+3 y_{2}+2 y_{3}+y_{4} \geq 1 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{align*}
$$

State the complementary slackness conditions for optimality of a feasible solution $x \in \mathbb{R}^{3}$ of the primal problem (4) and a feasible solution $y \in \mathbb{R}^{4}$ of the dual problem (5).

Answer: Denote by $\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ the primal slack variables,

$$
\begin{aligned}
& w_{1}=4-x_{1}+x_{2}-x_{3}, \\
& w_{2}=6-2 x_{1}-x_{2}-3 x_{3}, \\
& w_{3}=3+x_{1}-2 x_{3}, \\
& w_{4}=8-x_{1}-x_{2}-x_{3},
\end{aligned}
$$

and by $\left(z_{1}, z_{2}, z_{3}\right)$ the dual slack variables,

$$
\begin{aligned}
& z_{1}=-3+y_{1}+2 y_{2}-y_{3}+y_{4}, \\
& z_{2}=-2-y_{1}+y_{2}+y_{4}, \\
& z_{3}=-1+y_{1}+3 y_{2}+2 y_{3}+y_{4} .
\end{aligned}
$$

Then x is optimal for the primal problem and y is optimal for the dual problem if and only if

$$
\begin{equation*}
x_{j} z_{j}=0, \quad j=1,2,3, \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{i} y_{i}=0, \quad i=1,2,3,4 \tag{7}
\end{equation*}
$$

1d

Suppose $\left(x_{1}, x_{2}, x_{3}\right)=(0,6,0)$ is optimal for the primal problem (4). Use the complementary slackness conditions to solve the dual problem.

Answer: If $\left(x_{1}, x_{2}, x_{3}\right)=(0,6,0)$ is optimal for the primal problem (4), we compute

$$
w_{1}=10, \quad w_{2}=0, \quad w_{3}=3, \quad w_{4}=2,
$$

and the strict inequalities $w_{1}>0, w_{3}>0, w_{4}>0$ imply via (7) that $y_{1}=y_{3}=y_{4}=0$. Moreover, $x_{2}>0$ implies via (6) that $z_{2}=0$, and thus (since $y_{1}=y_{3}=y_{4}=0$) it follows that $y_{2}=2$. One can easily check that $y=(0,2,0,0)$ is feasible, and we thus conclude that y is optimal.

Problem 2

A company produces food products A and B using machines M_{1} and M_{2}. One ton of product A requires 1 hour of processing on machine M_{1} and 2 hours on machine M_{2}. One ton of product B requires 3 hours of processing on M_{1} and 1 hour on M_{2}. Each day machine M_{1} has available 9 hours of processing time, while machine M_{2} has available 8 hours. Each ton of product produced (of either type) yields $\$ 1$ million profit.

2a

The problem is to decide how much of each food product should the company make per day to maximize profit. Formulate this optimization problem as a linear programming problem. Graph the feasible region F.

Answer: Denote by x_{1} the number of tons produced of product A, and by x_{2} the number of tons produced of product B. Then the LP formulation reads

$$
\begin{align*}
& \operatorname{maximize} x_{1}+x_{2} \\
& \text { subject to } \\
& x_{1}+3 x_{2} \leq 9, \tag{8}\\
& 2 x_{1}+x_{2} \leq 8, \\
& x_{1}, x_{2} \geq 0 .
\end{align*}
$$

The feasible region is plotted in Figure 1.

Figure 1: Plot of the feasible region in Problem 2a)

2b

Define what it means for a set $C \subset \mathbb{R}^{n}(n \geq 1)$ to be convex. Given a set $P \subset \mathbb{R}^{n}$, define the convex hull of $P, \operatorname{conv}(P)$. What is a polytope?

Answer: The set C is convex if for all $x_{1}, x_{2} \in C$,

$$
(1-\lambda) x_{1}+\lambda x_{2} \in C, \quad \forall \lambda \in[0,1] .
$$

The set $\operatorname{conv}(P)$ is the intersection of all convex sets containing P, i.e., the smallest convex set containing P. A polytype is a set that is the convex hull of a finite number of points in \mathbb{R}^{n}.

2c

Identify four extreme points $p_{1}, p_{2}, p_{3}, p_{4}$ such that the feasible region F in 2a can be written as conv ($\left.\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}\right)$. A known theorem states that $x \in F$ is a basic solution (in the LP sense) if and only if x is an extreme point of F. Use this to determine the optimal (basic) solution to the linear programming problem formulated in $\mathbf{2 a}$.

Answer: Take $p_{1}=(0,0), p_{2}=(4,0), p_{3}=(3,2)$, and $p_{4}=(0,3)$. Then $F=\operatorname{conv}\left(\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}\right)$. Clearly, $p_{1}, p_{2}, p_{3}, p_{4}$ are extreme points (i.e., they cannot be written as convex combinations of other points in F), and evaluating the objective function $x_{1}+x_{2}$ at these points we obtain

$$
0+0=0, \quad 4+0=4, \quad 3+2=5, \quad 0+3=3 .
$$

Hence the optimal solution is $x^{\star}=(3,2)$, with objective value 5 .

Problem 3

3a

Consider a general game defined by a matrix $A=\left\{a_{i, j}\right\}_{i, j} \in \mathbb{R}^{m \times n}$, $i=1, \ldots, m, j=1, \ldots, n$. What do we mean by (pure) minmax and maxmin strategies and the game's value?

Determine the minmax and maxmin strategies and value for the game given by

$$
A=\left(\begin{array}{cccc}
2 & 8 & 6 & 11 \tag{9}\\
2 & 3 & 4 & 2 \\
1 & 1 & 5 & 4
\end{array}\right) \in \mathbb{R}^{3 \times 4}
$$

Answer: We call $1 \leq r \leq m$ a minmax strategy (for the row player R) if

$$
\min _{i=1, \ldots m} \max _{j=1, \ldots, n} a_{i, j}=\max _{j=1, \ldots, n} a_{r, j} .
$$

We call $1 \leq s \leq n$ a maxmin strategy (for the column player K) if

$$
\max _{j=1, \ldots, n} \min _{i=1, \ldots m} a_{i, j}=\min _{i=1, \ldots, m} a_{i, s}
$$

The game has a value V if

$$
\min _{i=1, \ldots m} \max _{j=1, \ldots, n} a_{i, j}=\max _{j=1, \ldots, n} \min _{i=1, \ldots m} a_{i, j}=V .
$$

For (9) we compute $\max _{j} a_{1, j}=11, \max _{j} a_{2, j}=4, \max _{j} a_{3, j}=5$, and hence $r=2$ is a minmax strategy.

Similarly, $\min _{i} a_{i, 1}=1, \min _{i} a_{i, 2}=1, \min _{i} a_{i, 3}=4, \min _{i} a_{i, 4}=2$, and hence $s=3$ is a maxmin strategy.

The game's value is 4 since

$$
\min _{i} \max _{j} a_{i, j}=\max _{j} \min _{i} a_{i, j}=4 .
$$

3b

Consider a game given by a matrix $A=\left\{a_{i, j}\right\} \in \mathbb{R}^{m \times n}$. Explain (define) what we mean by a saddle point. Using the definition of a saddle point, verify that the strategies found in $\mathbf{3} \mathbf{a}$ for (9) constitute a saddle point.

Answer: A saddle point is a pair (r, s) of strategies (for R and K) satisfying

$$
a_{r, j} \leq a_{r, s} \leq a_{i, s}, \quad i=1, \ldots, m, j=1, \ldots, n .
$$

so $a_{r, s}$ is smallest in its column (s) and largest in its row (r). For (9) it is easily verified that $a_{2,3}=4$ satisfies

$$
a_{2, j} \leq 4 \leq a_{i, 3}, \quad i=1, \ldots, 3, j=1, \ldots, 4 .
$$

3c

Given a general matrix game defined by $A=\left\{a_{i, j}\right\} \in \mathbb{R}^{m \times n}$, suppose the row player R has a pure minmax strategy r, the column player K has a pure maxmin strategy s, and that the game has a value V. Show that (r, s) is a saddle point and that the value of the game is $V=a_{r, s}$.

Answer: For any $i=1, \ldots, m$,

$$
a_{i, s} \geq \min _{i=1, \ldots m} a_{i, s}=\max _{j=1, \ldots, n} \min _{i=1, \ldots m} a_{i, j},
$$

where the equality comes from s being a maxmin strategy for K. Since the game has a value V,

$$
\max _{j=1, \ldots, n} \min _{i=1, \ldots m} a_{i, j}=V=\min _{i=1, \ldots m} \max _{j=1, \ldots, n} a_{i, j}
$$

Moreover, since r is a minmax strategy for R,

$$
\min _{i=1, \ldots m} \max _{j=1, \ldots, n} a_{i, j}=\max _{j=1, \ldots, n} a_{r, j} \geq a_{r, j}
$$

where the latter inequality holds for any $j=1, \ldots, n$.
Summarizing, we have shown that

$$
a_{r, j} \leq V \leq a_{i, s}, \quad i=1, \ldots, m, j=1, \ldots n,
$$

and taking $(i, j)=(r, s)$ we arrive at $V=a_{r, s}$. This concludes the proof.

