UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Examination in:	MAT-INF3100 — Linear Optimization
Day of examination:	Monday, June 6th, 2016
Examination hours:	14.30-18.30
This problem set consists of 6 pages.	
Appendices:	None
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

1a

Consider the LP problem

maximize
$$-x_1 + 3x_2 + 2x_3$$

subject to
 $-x_1 + x_2 + 2x_3 \le 2,$
 $-3x_1 + 2x_2 + x_3 \le 1,$
 $8x_1 - 3x_2 + 2x_3 \le 2,$
 $x_1, x_2, x_3 \ge 0.$
(1)

Use the simplex algorithm to find the optimal solution.

Answer: Initial dictionary

$$\max \eta = -x_1 + 3x_2 + 2x_3,$$

$$w_1 = 2 + x_1 - x_2 - 2x_3,$$

$$w_2 = 1 + 3x_1 - 2x_2 - x_3,$$

$$w_3 = 2 - 8x_1 + 3x_2 - 2x_3.$$

We perform a pivot step with x_2 into the basis and w_2 out of the basis (so $x_2 = \frac{1}{2} + \frac{3}{2}x_1 - \frac{1}{2}x_3 - \frac{1}{2}w_2$), resulting in the dictionary

$$\max \eta = \frac{3}{2} + \frac{7}{2}x_1 + \frac{1}{2}x_3 - \frac{3}{2}w_2,$$

$$w_1 = \frac{3}{2} - \frac{1}{2}x_1 - \frac{3}{2}x_3 + \frac{1}{2}w_2,$$

$$x_2 = \frac{1}{2} + \frac{3}{2}x_1 - \frac{1}{2}x_3 - \frac{1}{2}w_2,$$

$$w_3 = \frac{7}{2} - \frac{7}{2}x_1 - \frac{7}{2}x_3 - \frac{3}{2}w_2.$$

(Continued on page 2.)

We perform a pivot step with x_1 into the basis and w_3 out of the basis (so $x_1 = 1 - x_3 - \frac{3}{7}w_2 - \frac{2}{7}w_3$), resulting in the dictionary

$$\max \eta = 5 - 3x_3 - 3w_2 - w_3,$$

$$w_1 = 1 - x_3 + \frac{10}{14}w_2 + \frac{1}{7}w_3,$$

$$x_2 = 2 - 2x_3 - \frac{8}{7}w_2 - \frac{3}{7}w_3,$$

$$x_1 = 1 - x_3 - \frac{3}{7}w_2 - \frac{2}{7}w_3.$$

(2)

This is an optimal dictionary. The optimal solution is

$$(x_1, x_2, x_3) = (1, 2, 0),$$

with corresponding optimal value 5.

1b

Determine the dual problem of (1). Moreover, find an optimal solution of the dual problem.

Answer: The dual problem reads

minimize
$$2y_1 + y_2 + 2y_3$$

subject to
 $-y_1 - 3y_2 + 8y_3 \ge -1,$
 $y_1 + 2y_2 - 3y_3 \ge 3,$
 $2y_1 + y_2 + 2y_3 \ge 2,$
 $y_1, y_2, y_3 \ge 0.$
(3)

Using the "negative transpose property" (complementarity between x_j and z_j and between y_i and w_i), we read off the dual solution from the optimal dictionary (2) for the primal problem. The optimal dual solution is

$$(y_1, y_2, y_3) = (0, 3, 1),$$

with dual objective value is 5.

1c

Consider the primal problem

maximize
$$3x_1 + 2x_2 + x_3$$

subject to
 $x_1 - x_2 + x_3 \le 4$,
 $2x_1 + x_2 + 3x_3 \le 6$, (4)
 $-x_1 + 2x_3 \le 3$,
 $x_1 + x_2 + x_3 \le 8$,
 $x_1, x_2, x_3 \ge 0$,

(Continued on page 3.)

and the corresponding dual problem

minimize
$$4y_1 + 6y_2 + 3y_3 + 8y_4$$

subject to
 $y_1 + 2y_2 - y_3 + y_4 \ge 3,$
 $-y_1 + y_2 + y_4 \ge 2,$
 $y_1 + 3y_2 + 2y_3 + y_4 \ge 1,$
 $y_1, y_2, y_3 \ge 0.$
(5)

State the complementary slackness conditions for optimality of a feasible solution $x \in \mathbb{R}^3$ of the primal problem (4) and a feasible solution $y \in \mathbb{R}^4$ of the dual problem (5).

<u>Answer:</u> Denote by (w_1, w_2, w_3, w_4) the primal slack variables,

$$w_1 = 4 - x_1 + x_2 - x_3,$$

$$w_2 = 6 - 2x_1 - x_2 - 3x_3,$$

$$w_3 = 3 + x_1 - 2x_3,$$

$$w_4 = 8 - x_1 - x_2 - x_3,$$

and by (z_1, z_2, z_3) the dual slack variables,

$$z_1 = -3 + y_1 + 2y_2 - y_3 + y_4,$$

$$z_2 = -2 - y_1 + y_2 + y_4,$$

$$z_3 = -1 + y_1 + 3y_2 + 2y_3 + y_4.$$

Then x is optimal for the primal problem and y is optimal for the dual problem if and only if

$$x_j z_j = 0, \qquad j = 1, 2, 3,$$
 (6)

and

$$w_i y_i = 0, \quad i = 1, 2, 3, 4.$$
 (7)

1d

Suppose $(x_1, x_2, x_3) = (0, 6, 0)$ is optimal for the primal problem (4). Use the complementary slackness conditions to solve the dual problem.

<u>Answer:</u> If $(x_1, x_2, x_3) = (0, 6, 0)$ is optimal for the primal problem (4), we compute

$$w_1 = 10, \quad w_2 = 0, \quad w_3 = 3, \quad w_4 = 2,$$

and the strict inequalities $w_1 > 0$, $w_3 > 0$, $w_4 > 0$ imply via (7) that $y_1 = y_3 = y_4 = 0$. Moreover, $x_2 > 0$ implies via (6) that $z_2 = 0$, and thus (since $y_1 = y_3 = y_4 = 0$) it follows that $y_2 = 2$. One can easily check that y = (0, 2, 0, 0) is feasible, and we thus conclude that y is optimal.

Problem 2

A company produces food products A and B using machines M_1 and M_2 . One ton of product A requires 1 hour of processing on machine M_1 and 2 hours on machine M_2 . One ton of product B requires 3 hours of processing on M_1 and 1 hour on M_2 . Each day machine M_1 has available 9 hours of processing time, while machine M_2 has available 8 hours. Each ton of product produced (of either type) yields \$1 million profit.

2a

The problem is to decide how much of each food product should the company make per day to maximize profit. Formulate this optimization problem as a linear programming problem. Graph the feasible region F.

<u>Answer:</u> Denote by x_1 the number of tons produced of product A, and by x_2 the number of tons produced of product B. Then the LP formulation reads

maximize
$$x_1 + x_2$$

subject to
 $x_1 + 3x_2 \le 9,$ (8)
 $2x_1 + x_2 \le 8,$
 $x_1, x_2 \ge 0.$

The feasible region is plotted in Figure 1.

Figure 1: Plot of the feasible region in Problem 2a)

2b

Define what it means for a set $C \subset \mathbb{R}^n$ $(n \ge 1)$ to be convex. Given a set $P \subset \mathbb{R}^n$, define the convex hull of P, conv(P). What is a polytope?

<u>Answer:</u> The set C is convex if for all $x_1, x_2 \in C$,

$$(1-\lambda)x_1 + \lambda x_2 \in C, \quad \forall \lambda \in [0,1].$$

The set $\operatorname{conv}(P)$ is the intersection of all convex sets containing P, i.e., the smallest convex set containing P. A polytype is a set that is the convex hull of a finite number of points in \mathbb{R}^n .

2c

Identify four extreme points p_1, p_2, p_3, p_4 such that the feasible region F in **2a** can be written as conv ($\{p_1, p_2, p_3, p_4\}$). A known theorem states that $x \in F$ is a basic solution (in the LP sense) if and only if x is an extreme point of F. Use this to determine the optimal (basic) solution to the linear programming problem formulated in **2a**.

<u>Answer:</u> Take $p_1 = (0,0)$, $p_2 = (4,0)$, $p_3 = (3,2)$, and $p_4 = (0,3)$. Then $F = \operatorname{conv}(\{p_1, p_2, p_3, p_4\})$. Clearly, p_1, p_2, p_3, p_4 are extreme points (i.e., they cannot be written as convex combinations of other points in F), and evaluating the objective function $x_1 + x_2$ at these points we obtain

 $0 + 0 = 0, \quad 4 + 0 = 4, \quad 3 + 2 = 5, \quad 0 + 3 = 3.$

Hence the optimal solution is $x^* = (3, 2)$, with objective value 5.

Problem 3

3a

Consider a general game defined by a matrix $A = \{a_{i,j}\}_{i,j} \in \mathbb{R}^{m \times n}$, $i = 1, \ldots, m, j = 1, \ldots, n$. What do we mean by (pure) minmax and maxmin strategies and the game's value?

Determine the minmax and maxmin strategies and value for the game given by

$$A = \begin{pmatrix} 2 & 8 & 6 & 11 \\ 2 & 3 & 4 & 2 \\ 1 & 1 & 5 & 4 \end{pmatrix} \in \mathbb{R}^{3 \times 4}.$$
 (9)

<u>Answer:</u> We call $1 \le r \le m$ a minmax strategy (for the row player R) if

$$\min_{i=1,\dots,m} \max_{j=1,\dots,n} a_{i,j} = \max_{j=1,\dots,n} a_{r,j}.$$

We call $1 \leq s \leq n$ a maxmin strategy (for the column player K) if

$$\max_{j=1,...,n} \min_{i=1,...,m} a_{i,j} = \min_{i=1,...,m} a_{i,s}.$$

The game has a value V if

$$\min_{i=1,\dots,m} \max_{j=1,\dots,n} a_{i,j} = \max_{j=1,\dots,n} \min_{i=1,\dots,m} a_{i,j} = V.$$

For (9) we compute $\max_j a_{1,j} = 11$, $\max_j a_{2,j} = 4$, $\max_j a_{3,j} = 5$, and hence r = 2 is a minimax strategy.

(Continued on page 6.)

Similarly, $\min_i a_{i,1} = 1$, $\min_i a_{i,2} = 1$, $\min_i a_{i,3} = 4$, $\min_i a_{i,4} = 2$, and hence s = 3 is a maxmin strategy.

The game's value is 4 since

$$\min_{i} \max_{j} a_{i,j} = \max_{j} \min_{i} a_{i,j} = 4$$

3b

Consider a game given by a matrix $A = \{a_{i,j}\} \in \mathbb{R}^{m \times n}$. Explain (define) what we mean by a saddle point. Using the definition of a saddle point, verify that the strategies found in **3a** for (9) constitute a saddle point.

<u>Answer:</u> A saddle point is a pair (r, s) of strategies (for R and K) satisfying

$$a_{r,j} \le a_{r,s} \le a_{i,s}, \qquad i = 1, \dots, m, \ j = 1, \dots, n.$$

so $a_{r,s}$ is smallest in its column (s) and largest in its row (r). For (9) it is easily verified that $a_{2,3} = 4$ satisfies

$$a_{2,j} \le 4 \le a_{i,3}, \qquad i = 1, \dots, 3, \ j = 1, \dots, 4.$$

3c

Given a general matrix game defined by $A = \{a_{i,j}\} \in \mathbb{R}^{m \times n}$, suppose the row player R has a pure minmax strategy r, the column player K has a pure maxmin strategy s, and that the game has a value V. Show that (r, s) is a saddle point and that the value of the game is $V = a_{r,s}$.

<u>Answer:</u> For any $i = 1, \ldots, m$,

$$a_{i,s} \ge \min_{i=1,\dots,m} a_{i,s} = \max_{j=1,\dots,n} \min_{i=1,\dots,m} a_{i,j},$$

where the equality comes from s being a maxmin strategy for K. Since the game has a value V,

$$\max_{j=1,\dots,n} \min_{i=1,\dots,m} a_{i,j} = V = \min_{i=1,\dots,m} \max_{j=1,\dots,n} a_{i,j}.$$

Moreover, since r is a minmax strategy for R,

$$\min_{i=1,\dots,m} \max_{j=1,\dots,n} a_{i,j} = \max_{j=1,\dots,n} a_{r,j} \ge a_{r,j},$$

where the latter inequality holds for any j = 1, ..., n.

Summarizing, we have shown that

$$a_{r,j} \le V \le a_{i,s}, \qquad i = 1, \dots, m, \ j = 1, \dots, n,$$

and taking (i, j) = (r, s) we arrive at $V = a_{r,s}$. This concludes the proof.

THE END