LP. Lecture Game theory

Chapter 11: game theory

- matrix games
- optimal strategies
- von Neumann's minmax theorem
- connection to LP
- useful LP modeling of (certain) minmax and maxmin problems

Example: Paper-Scissors-Rock (= saks-papir-stein)
The game:

- Two persons independently choose one of the three options: Paper, Scissors or Rock
- Rules: Paper beats Rock, Rock beats Scissors, Scissors beats Paper.
Payoff matrix:

$$
A=\left[\begin{array}{rrr}
P & R & S \\
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right] \begin{aligned}
& P \\
& R \\
& S
\end{aligned}
$$

- Row player (R) chooses a row i, the Column player (K) chooses a column j, and the payoff is the entry $a_{i j}$: the row player pays the column player $a_{i j}$ kroner (NOK).
- Similar for a general $m \times n$ matrix $A=\left[a_{i j}\right]$; this is called a Matrix game. (two-pleayer, finite, zero -sum)
- Analyze matrix games
- Assume both players are intelligent and know thy rules
what is a. good stickegy?

PURE STRATEGIES
Consider

$$
A=\left[\begin{array}{llll}
5 & 2 & 7 & 6 \\
1 & 2 & 2 & 0 \\
1 & 4 & 3 & 3
\end{array}\right]
$$

Consider column-playe K : K wants to maximize worst case,
i.e the smollett payoff
$V^{*}=\max _{j} \min _{i} a_{i j} \quad$ (matin stictegy)
R wants to minimize worst case, \therefore i. the maximal payoff
$u^{*}=\min _{i} \max \operatorname{aij}_{j} \quad$ (minnax strategy)
$i=2$ and $j=3$ is optimal fur both!
a_{23} is a saddle-point
This gave has a value

$$
V=V^{x}=U^{x}=2
$$

So,

- K wins at least 2 (independent of R s choice)
- R pays at most 2 (independent of Ks choice)
- If both players play optimally, R pays K 2 (not fair!)

The Rock-scissurs-paper gale has no value: $V_{*}=-1<1=U_{*}$

No particular optimal pure/fixed strategy for any of the players

Randomized strategies

- The choice studied above is called a deterministic strategy: choose one row (or column).
- In Paper-Scissors-Rock no deterministic strategy can always win (if the game is played repeatedly), e.g., if R always chooses Paper, soon K will choose Scissors.
- May be better to use a randomized strategy: R chooses row i with probability y_{i}, and, independently, K chooses column j with probability x_{j}.
- So:

$$
\begin{aligned}
& \sum_{i=1}^{m} y_{i}=1, \quad y_{i} \geq 0 \quad(i \leq m) \\
& \sum_{j=1}^{m} x_{j}=1, \quad x_{j} \geq 0 \quad(j \leq n)
\end{aligned}
$$

The Expected payoff from R to K is (recall probability theory!):

$$
\sum_{i} \sum_{j} y_{i} a_{i j} x_{j}=y^{T} A x
$$

Both players should optimize their expected worst case

Optimal strategies
optimize Expected payoff $y^{\top} A x$
K's actuation : wants maximal guaranteed payoff (from R)
if k choose (rand ionized) shachegy x
the best choice for R would be min $y^{T} A \underline{X}$
Y
Therefore k 's beet choice is to maximize this: $\underset{x}{\max } \min _{y} y^{\top} A x \quad\binom{$ maximin }{ for $k}$

Similar analysis for R
Wants minimal guaranteed payoff (to K)
$\min _{y} \max _{x}$ y' Ax (mimmox states
for $R)$
For the paper-scissors-rock gan $x=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is optimal worn min for k $y=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is optimal mimax for R (ail show later)

Lets look at k's peoberu

Inner optimization is "simple": Given x

$$
f(x)=\min _{y} y^{\top} A x=\min _{i=1, \ldots, m} e_{i}^{\top} A x
$$

where $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$, the i 'th coordinate vector.
Note:

- the minimum value $f(x)$ is in fact the minimal element of the vector $A x$ (which is again a convex combination of the columns of A, a mix of "pure" payoffs)
- we have reduced a continuous problem to a discrete problem

We may conclude that

$$
\underset{x}{\max } \min _{x} \operatorname{mix}_{x}=\max _{x}^{\min e_{i}^{T} A x} \underbrace{\min _{i}}_{f(x)}
$$

Can formulate this as an LP (with the above $v=f(x)$ as the objective function)

K's problem in matrix rotation max V
suchthat re $-A x \leq 0$

$$
\begin{aligned}
& e-A x \leqslant 0(L P-K) \\
& e^{\top} x=1 \\
& x \geqslant 0
\end{aligned}
$$

where $e_{i}=(1, \ldots, 1)$
Clearly a LP! (not in sturdurd
form)
Can find optimal maximin randomized strategy x^{*} for k by solving this!

Optimal value

$$
v^{*}=\max _{x} \min _{y} y^{\top} A x
$$

The maxmin problem: strategy for player K
Let e_{i} be the i th coordinate vector and e the all ones vector (of suitable size). Note that an LP with the feasible set being the standard simplex $S=\left\{y: \sum_{i} y_{i}=1, y \geq 0\right\}$ is easy, so we get:

$$
\begin{aligned}
& v^{*}=\max _{x} \min _{y} y^{T} A x=\max _{x} \underbrace{i}_{\text {min }} e_{i}^{T} A x \\
& \text { Therefore player K's strategy problem may be written as the LP } \underbrace{\text { obect }}_{x} \text { ine }
\end{aligned}
$$ problem

$$
\max \left\{v: v \leq e_{i}^{T} A x(i \leq m), \sum_{j} x_{j}=1, x \geq 0\right\}
$$

with variables $v \in \mathbb{R}, x \in \mathbb{R}^{n}$; or in matrix notation:

$$
\begin{array}{ccc}
& \max & v \\
\text { (LP-K) } & \text { s.t. } & \\
& & v e-A x \leq 0 \\
& & e^{T} x=1 \\
& & x \geq 0
\end{array}
$$

Thus: we can find an optimal strategy x for K efficiently by solving this LP.

The minmax problem: strategy for player R
Similar analysis for player R :

$$
u^{*}=\min _{y} \max _{x} y^{T} A x=\min _{y} \underbrace{\max _{j} y^{T} A e_{j}}
$$ halve for

So, player R's strategy problem becomes the LP problem y

$$
\min \left\{u: u \geq y^{T} A e_{j}(j \leq n), \sum_{i} y_{i}=1, y \geq O\right\}
$$

with variables $u \in \mathbb{R}, y \in \mathbb{R}^{m}$; which is

$$
\begin{array}{cc}
(\mathrm{LP}-\mathrm{R}) \text { s.t. } & \\
& u e-A^{T} y \geq 0 \\
e^{T} y=1 \\
& y \geq 0
\end{array}
$$

This is the dual of $(L P-K)$

The min-max theorem
So: $L P-R$ is dual to $L P-K$
By duality: if x^{*} and y^{x} are feasible for $L P-K$ and $\angle P-R$, Then

with equality if x^{*} and y^{*} are optical!
optional solutions x^{*} and y^{*} exist since both problems are feasible. (feasible stisclosed and bounded)

The minmax theorem
Theorem [John vo Neumann(1928)] Let x^{*} be an optimal strategy for player K and y^{*} an optimal strategy for player R. Then

$$
v^{*}=\max _{x}\left(y^{*}\right)^{T} A x=\min _{y} y^{T} A x^{*}=u^{*}
$$

ie., $\min _{y} \max _{x} y^{T} A x=\max _{x} \min _{y} y^{T} A x$.
Proof. One can check that problem LP-R is the dual LP of problem LP-K. (Exercise!) So, by the duality theorem of LP the optimal value v^{*} of LP-K equals the optimal value u^{*} of LP-R, and this proves the theorem.

- The common value $v^{*}=u^{*}$ is called the value of the game: this is the expected payoff when both players play optimally
- It is also possible to prove the LP duality theorem from vo Neumann's theorem
- Solve the LP's above, for some selected A's, using OPL-CPLEX.
- If $r^{*}=v^{*}=0$, the gave is fair
- Symmetric games $\left(a_{i j}=-a_{j i}\right)$
are fair

Solving the Rock-Scissors-Paper problem

$$
A=\left[\begin{array}{rrr}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

Stumutnic gave! So value $v^{*}=u^{*}=0$ Lets the $x=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
Then $A_{x}=0$
So min y $y^{\operatorname{T} A X}=0=r^{*}$
By duality:
This is the ostinal value of $(P-K$ $\Rightarrow x=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is oprinial

The same is true for R :

$$
y=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \text { is optimal }
$$

Solving a modified problem

$$
A=\left[\begin{array}{rrr}
0 & 1 & -2 \\
-3 & 0 & 4 \\
5 & -6 & 0
\end{array}\right]
$$

Column player K's problem in matrix form

Non-standard form: equality constraint and a free variable
Write the problem in equation form:

$$
\begin{aligned}
& \text { maximize } \\
& \text { subject to } \quad-x_{2}+2 x_{3}+v \leq 0 \\
& 3 x_{1} \quad-4 x_{3}+v \leq 0 \\
& -5 x_{1}+6 x_{2}+v \leq 0 \\
& \frac{x_{1}+x_{2}+x_{3}=1}{x_{1}, x_{2}, x_{3} \geq 0}
\end{aligned}
$$

Remove equality constraint first:

$$
\begin{gathered}
\text { chimiate } x_{3} \text { from equations } \\
x_{3}=1-x_{1}-x_{2}
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{maximize} & v \\
\text { subject to }-2 x_{1}-3 x_{2}+v & \leq-2 \\
7 x_{1}+4 x_{2}+v & \leq 4 \\
-5 x_{1}+6 x_{2}+v & \leq 0 \\
x_{1}+x_{2} & \leq 1 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

white in dictionary form, with x_{3} as slack-ncwabe

$$
\begin{array}{rr}
\xi= & v \\
\hline x_{4}=-2+2 x_{1}+3 x_{2}-v \\
x_{5}=4-7 x_{1}-4 x_{2}-v \\
x_{6}= & 5 x_{1}-6 x_{2}-v \\
x_{3}=1-x_{1}-x_{2} .
\end{array}
$$

v is free, does rot belong as nor-basic pivot to make v basic

$$
\begin{aligned}
& \frac{\xi}{}=-2+2 x_{1}+3 x_{2}-x_{4} \\
& \hline v=-2+2 x_{1}+3 x_{2}-x_{4} \\
& x_{5}=6-9 x_{1}-7 x_{2}+x_{4} \\
& x_{6}=2+3 x_{1}-9 x_{2}+x_{4} \\
& x_{3}=1-x_{1}-x_{2} .
\end{aligned}
$$

Reduced dictionary is in standard form!

$$
\begin{aligned}
\xi & =-2+2 x_{1}+3 x_{2}-x_{4} \\
\hline x_{5} & =6-9 x_{1}-7 x_{2}+x_{4} \\
x_{6} & =2+3 x_{1}-9 x_{2}+x_{4} \\
x_{3} & =1-x_{1}-x_{2}
\end{aligned}
$$

Feasible, run simplex algorithm to find optimal solution

$$
\begin{aligned}
102 \xi & =-16-27 x_{5}-13 x_{6}-62 x_{4} \\
\hline 102 x_{1} & =40-9 x_{5}+7 x_{6}+2 x_{4} \\
102 x_{2} & =36-3 x_{5}-9 x_{6}+12 x_{4} \\
102 x_{3} & =26+12 x_{5}+2 x_{6}-14 x_{4} .
\end{aligned}
$$

Optional solution $x^{*}=\frac{1}{102}(40,36,26)$

$$
y^{*}=\frac{1}{102}(62,27,13)
$$

$$
\text { value }=v^{*}=u^{*}=\frac{-16}{102}
$$

So the row-player has a slight advantage

