Lecture 15

Last time: Network Flow Problems (V14 & GDs notes)

» Tree solutions correspond to basic solutions
« Primal and dual network simplex method

* (Integrality)

Today:
 Integrality (V14)
« Applications (V14-15)
> Transportation
> Matching/assignment

> Shortest paths



Network simplex method - recap
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Integrality

THEOREM 14.2. Integrality Theorem. For network flow problems with integer
data, every basic feasible solution and, in particular, every basic optimal solution
assigns integer flow to every arc.
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THEOREM 14.3. Konig’s Theorem. Suppose that there are n girls and n boys,
that every girl knows exactly k boys, and that every boy knows exactly k girls. Then
n marriages can be arranged with everybody knowing his or her spouse.



Transportation problem
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Tabular notation: supply (rows), dermand (cols) and edge costs
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Solution: x (boxed) and z (not boxed), * means no edge
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Matching/assignment problem
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Find optimal solution efficiently using NSM



The shortest path problem (section 15.3)

We study a basic combinatorial problem. But first:

» A (directed) walk in a directed graph D = (V,E) is a
sequence
P = (VOa €1, V1, €2, ..., €, Vk)
where k >0, v; € V (0<i<k)and e = (vi_1,v;) (i <k).
We say that P goes from v, to v, and call P a vyv,-walk.

» A (directed) path is walk P where vy, vq, ..., vy are distinct;
it is called a vgvi-path.

» The difference is that a walk may contain cycles.

The shortest path problem: given a directed graph D = (V, E)
with a nonnegative number (length, weight) c;; for each edge (i,),
and two nodes s and r, find a shortest path P from s to r. Here
the length of a path is the sum of the cji's for its edges.
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Network flow formulation

The shortest path problem is a special case of the minimum cost
network flow problem:

F=

min{c'x: Ax = —b, x > O}.
.

Here A is the node-edge incidence matrix of the graph, c is the
cost vector (the edge lengths), and b= (b, : v € V) is the
vector given by bs = 1, b, = —1 and b, = 0 otherwise.
This approach works because there is an integer optimal
solution, and the edges with positive flow must contain a path
from s to r: x;; = 1 for all edges in the path, and x;; =0
otherwise. (If there are edges with zero length, one may get
cycles in addition to the path.)

So one may solve the shortest path problem as a min. cost
network flow problem using the network simplex algorithm.

However, simpler and faster algorithms also exist! We shall
discuss two such methods.
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Shortest paths by dynamic programming
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The Bellman-Ford algorithm

» For v € V og k > 0 (integer), we define di(v) as the
minimum length of an sv-walk with at most k edges. If there
is no such walk, define dj(v) = oc.

How can we compute these these distance functions?

The Bellman-Ford's algorithm: /et dy(s) = 0 and dp(v) = oo for
each v # s. Compute the functions dy,d>, ..., d, by

’

di+1(v) = min{dk(v), min (dk(u)+ cuv)} (1)

u:(u,v)eE
for all v € V.

Theorem: The Bellman-Ford algorithm finds the correct distances,
i.e., di(v) becomes the minimum length of an sv-walk with at
most k edges. In particular, d,—1(v) is the length of a shortest
sv-path (here n is the number of nodes in the graph).
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Proof: A shortest sv-path with at most k + 1 edges has either (i)
at most k edges or (ii) it has k + 1 edges and contains an edge

(u, v) as its final edge. But in case (ii) the subpath to u must be a
shortest su-path with at most k edges (for otherwise we could find
another shorter su-path and thereby improve the sv-path). i

» The equation (1) for computing dy; based on d is called
Bellman's equation. It is also used in similar problems called
(discrete) dynamic programmering or optimal control
(continuous version); the equation is then called the
Hamilton-Jacobi-Bellman (HJB) equation.

» The BF-algorithm has complexity (number of arithmetic
computations) O(nm) where the graph has n nodes and m
edges. T

» The algorithm has another important property: it can also be
used if there are negative lengths on the edges. The BF
algorithm will then decide if there exists a cycle reachable from
s with total length which is negative; then d,(v) < dp—1(v). If
this does not happen, the BF algorithm finds a shortest
sv-path.
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Dijkstra’s algorithm

» This is also an algorithm for the shortest path problem.

» It only works for nonnegative edge lengths (which is most
common in applications!)

» Dijkstra's algorithm is faster than the Bellman-Ford algorithm.

» Note: our description is slightly different than the one in the
book: we start at s and move forward along edges while
Vanderbei goes backwards!

» A usual nis the number of nodes.
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» The algorithm performs n iterations, in each iteration one
node is added to a certain set F and certain computations are
done. At the start F = ().

» One has a value (a label) dj, for each node i: d; is an upper
bound on the (shortest) distance from s to i. Initially: ds = 0,
and d; = oo otherwise. F consist of the nodes to which one
already has found a shortest path, for these nodes d; is equal
to the distance from s to i.

» In each iteration:

1. choose an i ¢ F with d; smallest possible (“a closest node”),
and update F := F U {i}.
2. for each edge (i,j) € E where j & F, set
d; = min{d;, d; + c;;}

and, if d; was reduced, set a pointer prev(j) = i.
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» This means that, at the start of each iteration, d(v) is equal
to the length of a shortest sv-path that only uses nodes in F.

We have (without giving the proof, which is a rather simple
induction proof, by the way):

Theorem: Dijkstra’s algorithm finds a shortest path, and

corpasponding distances d,, from s to each node v. The complexity
ARSI S0

Example: use Dijkstra (and Bellman-Ford) here:
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Shortest paths on meshes (bonus material)

Method using continuous version of Dijkstras algorithm










