Lecture 16 - last lecture

Last time

- Integrality (V14)
- Applications (V14-15)
> Transportation
> Matching/assignment
> Shortest paths
Today
- Summary of curriculum
- Exam problems from 2017

The rest of the semester

- Tutorial tomorrow and next wednesday
- Guest lecture next tuesday
- Q\&A june 5.
- Exam june 7.

The final syllabus is the union of
(i) those topics that are lectured (see lecture notes)
(ii) The lecture notes of G. Dahl, including "A mini-introduction to convexity"
(iii) the following from Vanderbei's book (see below):

- Chapter 1-6: all.
- Chapter 7: 7.1.
- Chapter 11: 11.1-11.3.
- Chapter 12: 12.4.
- Chapter 14: all sections except 14.5.
- Chapter 15: 15.1-15.3.
- Chapter 17: all.
(Here, for instance, 11.1-11.3 means, 11.1, 11.2 and 11.3.)

We use the following edition of Vanderbeis book:
" R. Vanderbei, "Linear Programming: Foundations and Extensions". Fourth Edition, Springer (2014). It may be downloaded for free, see More

Problem 1
Consider the LP problem (P)

$$
\begin{aligned}
x_{1}+2 x_{2} & \\
\text { maximize } & \leq 3, \\
-x_{1}+3 x_{2} & \leq 3, \\
2 x_{1}+x_{2} & \leq 8 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

1a
Use the simplex method to find an optimal solution and the corresponding objective value.

$$
\begin{aligned}
n & =x_{1}+2 x_{2} \\
\rightarrow w_{1} & =3+x_{1}-3 x_{2} \\
w_{2} & =8-2 x_{1}-x_{2} \\
n & =x_{1}+2\left(1+\frac{1}{3} x_{1}-\frac{1}{3} w_{1}\right)=2+\frac{5}{3} x_{1}-\frac{2}{3} w_{1} \\
x_{2} & =1+\frac{1}{3} x_{1}-\frac{1}{3} w_{1} \\
\rightarrow w_{2} & =8-2 x_{1}-\left(1+\frac{1}{3} x_{1}-\frac{1}{3} w_{1}\right)=7-\frac{7}{3} x_{1}+\frac{1}{3} w_{1} \\
n & =2+\frac{5}{3}\left(3-\frac{3}{7} w_{2}+\frac{1}{7} w_{1}\right)-\frac{2}{3} w_{1}=7-\frac{5}{7} w_{2}-\frac{3}{7} w_{1} \\
x_{2} & =2-\frac{1}{7} w_{2}-\frac{2}{7} w_{1} \\
x_{1} & =3-\frac{3}{7} w_{2}+\frac{1}{7} w_{1}
\end{aligned}
$$

optimal ail feasible!

$$
\text { Basic solution: } w_{1}=w_{2}=0
$$

$$
x_{1}=3 \text { ald } x_{2}=2
$$

$$
n=7
$$

$$
\begin{aligned}
\operatorname{maximize} & x_{1}+2 x_{2} \\
\text { subject to } & \leq x_{1}+3 x_{2} \\
2 x_{1}+x_{2} & \leq 8 \\
x_{1}, x_{2} & \geq 0
\end{aligned} \quad \quad x_{2} \leqslant 1+\frac{1}{3} x_{1}
$$

1b
Make a plot of the feasible region for (P) and indicate your optimal solution.

$$
\begin{aligned}
& \text { maximize } \quad x_{1}+2 x_{2} \\
& \text { subject to }-x_{1}+3 x_{2} \leq 3 \text {, } \\
& 2 x_{1}+x_{2} \leq 8 \text {, } \\
& x_{1}, x_{2} \geq 0 \text {. }
\end{aligned}
$$

1c
(i) Let $\left(\mathrm{P}^{\prime}\right)$ be the LP problem formed by adding the constraint, $x_{1}+3 x_{2} \leq 10$, to (P). What is the optimal objective value of $\left(\mathrm{P}^{\prime}\right)$?
(ii) Let $\left(\mathrm{P}^{\prime \prime}\right)$ be the LP problem formed by replacing the objective function of (P) by $x_{1}+3 x_{2}$. What is the optimal objective value of $\left(\mathrm{P}^{\prime \prime}\right)$?

Test the previous optimal dictionary:

$$
\begin{aligned}
\eta & =x_{1}+3 x_{2}=3-\frac{3}{7} w_{2}+\frac{1}{7} w_{1}+3\left(2-\frac{1}{7} w_{2}-\frac{2}{7} w_{1}\right. \\
& =9-\frac{6}{7} w_{2}-\frac{5}{7} w_{1}
\end{aligned}
$$

Optimal solution (negative coefficients)!
Optimal objective value is 9

$$
\begin{aligned}
& \text { maximize } \quad x_{1}+2 x_{2} \\
& \text { subject to }-x_{1}+3 x_{2} \leq 3 \text {, } \\
& 2 x_{1}+x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0 \text {. }
\end{aligned}
$$

id
What is the dual problem (D) of (P)?

$$
\begin{aligned}
\min & 3 y_{1}+8 y_{2} \\
\text { sit. }-y_{1}+2 y_{2} & \geqslant 1 \\
3 y_{1}+y_{2} & \geqslant 2 \\
y_{1}, y_{2} & \geqslant 0
\end{aligned}
$$

1 e
What is an optimal solution to (D) and what is the corresponding optimal
value? use optimal ptincal dictionary

$$
\begin{aligned}
\eta & =7-(5 / 7) w_{2} \\
\hline x_{2} & =2-(3 / 7) w_{1} \\
x_{1} & =3-(1 / 7) w_{2} \\
& -(3 / 7) w_{2}
\end{aligned}+(1 / 7) w_{1},(1 / 7) w_{1},
$$

Dual optimal dictionary by negative transpose:

$$
\begin{aligned}
& -\xi=7-2 z_{2}-3 z_{1} \\
& y_{2}=\frac{5}{7}+\frac{1}{7} z_{2}+\frac{3}{7} z_{1} \\
& y_{1}=\frac{3}{7}+\frac{2}{7} z_{2}-\frac{1}{7} z_{1} \\
& \text { ORR'~ap solu+vi }\left(y_{1}, y_{2}\right)=\left(\frac{3}{7}, \frac{5}{7}\right)
\end{aligned}
$$

Optimal value $=7$

Problem 2
A matrix game is determined by a matrix $A=\left[a_{i j}\right]_{i=1, \ldots, m, j=1, \ldots, n}$. The row player (R) pays $a_{i j}$ kroner to the column player (K) if R chooses option i and K chooses option $j . \mathrm{R}$ is playing with a randomized strategy $y=\left(y_{1}, \ldots, y_{m}\right)^{T}$, choosing option i with probability y_{i}, where $y_{i} \geq 0$ and $\sum_{i=1}^{m} y_{i}=1$. Similarly, K is playing with a randomized strategy $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$, where $x_{j} \geq 0$ and $\sum_{j=1}^{n} x_{j}=1$.

2a
(i) If K uses a fixed strategy x, what is R's corresponding best defence, i.e., best corresponding strategy y ?
(ii) If R adopts the strategy in (i) in defence of the strategy x chosen by K, what is K's best strategy x^{*} ?
Expected payoff $y^{\top} A x$
i) Row-drayet should minimize this

$$
\min _{y} y^{T} A x \text { sit } e^{T} y=1, y \geqslant 0
$$

ii) Colum -placet should maximise pill

$$
\max _{x} \min _{y} y^{\top} A x \text { sit } e^{\top} x=1, x \geqslant 0
$$

2b
Explain how part (ii) of the last problem can be formulated as the LP problem

$$
\begin{aligned}
\operatorname{maximize} & v \\
\text { subject to } & v \leq e_{i}^{T} A x, \quad i=1,2, \ldots, m \\
& \sum_{j=1}^{n} x_{j}=1, \\
& x_{j} \geq 0, \quad j=1,2, \ldots, n
\end{aligned}
$$

where $e_{i} \in \mathbb{R}^{m}$ is the vector of all zeros with 1 in the i-th position.

$$
\begin{aligned}
& \text { "ley" optionization }
\end{aligned}
$$

$$
\begin{aligned}
& =\min _{i} e_{i}^{T} A x \\
& \text { polytope, convex sat } \\
& \text { with vertices }\left\{e_{i}\right\} \\
& \text { So } \\
& \max _{x} \min _{y} y^{\top} A x=\max _{x} \min _{i} e_{i}^{\top} A X
\end{aligned}
$$

Let $v \in \mathbb{R}$ be a lower bound on $l_{i}^{\top} A x$
i.e. $\quad V \leqslant$ min $\min _{i}$ Ax

Maximizing v yields the LP-pioplen
above

Problem 3

Consider the minimum cost network flow problem based on the directed graph shown in the figure. The number associated with each directed edge (i, j) is its cost $c_{i, j}$ (per unit flow). At each node i let b_{i} be its supply. The supplies are

$$
b_{u}=1, \quad b_{v}=-2, \quad b_{w}=-3, \quad b_{p}=6, \quad b_{q}=-2 .
$$

Ba

Write down the flow balance equation at node i. Let T_{1} be the spanning tree consisting of the edges

$$
(u, w), \quad(p, u), \quad(p, q), \quad(q, v)
$$

and all their nodes. Compute the tree solution x corresponding to T_{1}.

$$
\begin{aligned}
& \text { Flow balance at node i } \\
& \sum_{j:\binom{i}{i_{1}} \in E} \sum_{j i j} \sum_{j:(i, j) \in E}=-b i
\end{aligned}
$$

Bb
Use the network simplex method to find an optimal solution and optimal value for the flow problem.

Flow:

3c

In a general network flow problem, there may or may not be a unique optimal solution.
(i) Suppose the optimal solution is unique. If the supplies b_{i} are integers, will the flows $x_{i j}$ in the optimal solution be integers?
(ii) Suppose there is more than one optimal solution. If the supplies b_{i} are integers, will the flows $x_{i j}$ in an optimal solution be integers?
Explain your answers.
i) Yes. Integer data and no divisions in the algorithm
ii) Not necessarily. Any convex combination of solutions is also a solution, and will not be integral in general

