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Dual Simplex Method

maximize —I1 — 9
subjectto —2z7 — x9 < 4
—2.’,5‘1 + 43’,‘2 § —8
—X1 + 3.1?2 S -7
L1, L9 Z O .
minimize 4y, — 8y — Ty3
subjectto —2y; — 2y — y3 > —1
—y1 +4y2 +3y3 = —1
Y1, Y2, Y3 = 0.
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¥. &: =0
Dual Simplex Method >
9 We =0
\l/
(P) (= — T1— I
wy = 44 2x1 + x9
=) W9y = —8 + 25131 — 45132
w3 = —7+ x1 — 319
L
(D) —§ = —4dy1 + 8y2 + Tys
S z1=1-2y1 — 2y — y3
zo=1— y1 + 4y2 + 3y3 .
Yo W
% X,

(P) C = —4 — 0.5UJ2 - 3332

1:

r1 = 4+ 0.5ws + 224 R} | S
_ A
3

w —3 + 0.5wy — 9 V Q.J
-}y o,5 -]
(D) —§= 4—12yy — 421+ 3ys3 <

/73.\,“,3 ~> Y2 = 0.5 — 1y —0.527 — 0.5y3
Zo= 3 — oYy — 221+ ys .

97V § <12 =4 3
0.5 -l -0.5-0.J
(P) (=—-7— w3 —4xy | 3 -5 -0 |

wy = 18 + 2wz + Txo
r1= T4+ w3z—+ 3rs
wo = 064 2w3 + 2x9

(D) —&=T7—18y; — 7z1 — 6ys
ys=1— 2y1 — 2z — 2y
22:4— 7y1—321—2y2.
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Dual Simplex Method - Phase 1

February 19, 2019

maximize —x; + 4xo
subjectto —2x; — 9 < 4
—2x1 + 4y < —8
—r1 + 319 < —7
T, ro > 0.
')z T - MI - y?.
(P) ¢ = — 21 + 4w
w1 — 4 + 235’1 T— X9
Wo — —8 + 235‘1 — 4.56’2
’LU3:—7—— 1 —3.56’2,
(D) —§= —4dy1 + 8y2 + Ty3
z1= 1 —=2y1 — 2y2 — 3
zo=—4— y1 +4y2 + 3ys3 .

(D,) "f: 44,+34, Y74

g = | -ty tq Y
:'}Z < / -4, +¢4, +}7_,
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—7 — ws; —42132

=
]

18 + 2ws + 7Txo
1 = 7—|— ”LU3—|-3£EQ
6—|—2w3—|—2x2

g
||

S
|

g: ~Z,+l/z; = ~(~?~+W3+3Iz>+4zl
C = —7 — w3 + Lo

w1 = 18—|—2U)3 —|—7CEQ
1 — 7—|— w3+3:1:2
6-|-21U3—|—2£E2

S
||

February 19, 2019
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The dual simplex algorithm: example

February 19, 2019

v

n = 12 — 4x3 -— X0 — X3
DN xy = -4 + 3x — 1l + x3
X5 = 3 — x3 + 3x — 2x3
1. dual pivot: x4 leaves and x3 enters
n = 8 — \Z — 12 - x4
X3 = 4 — 3x1 + 1llxo + x4
~ x5 = =5 4+ bxy — 19% — 2x
2. dual pivot: x5 leaves and x; enters
n = 7 — 02x — 158xx — 1ldx
x3 = 1 — 06xs — 04x — 02x
x1 = 1 4+ 02x + 38x + 0.4x

Dual feasible, so go on with primal pivots: done right away!

21/26
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Duality, other forms
Our usual form of (P) and (D) is:

(P) max D=1 6%
subject to

Z_?:l aijXj

Xj

(D) min ST biyi
subject to

D ity Yidij

Yi

In matrix form:
(P)
(D)

<
>

>
>

0

Cj

fori=1,...
forj=1,...
for j=1,...
fori=1,...

max{ch : Ax < b, x > O}
min{b"y: ATy > ¢, y > O}.

February 19, 2019
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One may meet LP problems in other forms. But: every LP problem
may be rewritten in the form (P). To do so, certain techniques are

needed: [_E-.:b.) @ [E S!’ , -E ¢ ’L)

» each equation is written as two inequalities

» min f = — max(—f) x= Z+" Z\

» a free variable x is replaced by x™ — x~ where x™,x~ >0

One may then (if desirable) find the dual problem (since the primal
now has the “right” form) and write this in the simplest form
possible.
It is important to practise the techniques to

» write any LP problem on the form (P), and

» find the dual of any LP problem.

It is recommended to use the matrix form in this rewriting of the
problem.

February 19, 2019
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We then need to work on partitioned matrices, see section on this
in the linear algebra book (MAT1120). In particular, we need a rule
for matrix multiplication:

m, m
.-/-441? ’/:\-12‘ x*t }:' Apixt + Apax?
Az A x? ag | Aoix! + Axx?

Another useful rule is for the transpose of a partitioned matrix:

[ Ain A ]T
Ax1 A

_[ AL An
L AL AL

24 / 26
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Example:

max{cx! +d"x?: Alx! > b1, A2x1 4+ A3x2 < b2, x1,x% > O}
Here the variables are x! og x? (suitable vectors). We may write .
this in the form (P): v I ' b 4
(P) 7.../\7;5,!, X [ij"‘
Ax'+ A2 <l /
c T X1 —Al 0] X1 —bl 1 2
max{| 2l o2 el S| | x X 20}
Then the dual may be determined and, finally, one sees if the dual
may be simplified.

This, and related, examples are given on the blackboard. (For
instance, where a variable vector x is free (that is, no sign
constraint) and is replaced by x’ — x” where x’, x” > 0.)

25 / 26
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Last comment on this, a connection between the primal and the
dual:

» an equation in one of the problems corresponds to a free
variable in the other problem,

» an inequality in one of the problems corresponds to a
nonnegative variable in the other problem.

(v (v)
E=< b & Ecb = “2°
£ ¢-b 4. ¥9

er D 2N
7 4

26 / 26
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Resource Allocation

Recall the resource allocation problem (m =2, n = 3):

maximize ¢x; + Ty + C373

SUbjeCt to allxl + algxg + a13x3 S bl
anTi + apTy + axnry < by
T, To, T3 2 0,
where
c; = profit per unit of product j produced
b, = units of raw material 7 on hand
a;; = units raw material ¢ required to produce 1 unit of prod j.
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Closing Up Shop

If we produce one unit less of product 7, then we free up:
e ay; units of raw material 1 and

® ay; units of raw material 2.

Selling these unused raw materials for 3; and y, dollars/unit

yields a;y1 + as;y» dollars.

Only interested if this exceeds lost profit on each product j:

a1 + QoY2 2 Cj, J=123.

Consider a buyer offering to purchase our entire inventory.
Subject to above constraints, buyer wants to minimize cost:

minimize
subject to

© mao vk d.

N

by
anth
a2
@131

+  baye

+ Y 2

+ any: = C

+ QoY = ¢3
yi, y2 = 0.

February 19, 2019

N—"’
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LP. Lecture 6: Ch. 6: the simplex method in matrix form,
and Section 7.1: sensitivity analysis

» matrix notation

» simplex algorithm in matrix notation
» example

> negative transpose property: proof
» sensitivity analysis (section 7.1)

1/27
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Matrix notation

Dictionary contra matrix form:

» dictionary best for understanding simplex algorithm and
calculation by hand of minor examples

» in larger calculation the simplex algorithm in matrix form is
used.

» matrix form is more efficient. Uses numerical linear algebra.
» important questions: (i) pricing, (ii) quick updating of basis,
(iii) LU-factorization, (iv) exploiting sparsity

We will just explain the algorithm in matrix form, without
discussing the numerical questions.

2/27
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Consider LP problem in standard form

n
max )i X
S.t.

Z}T:13iljxj <b fori=1,...
xi 20 forj=1,...

Converting to equations by using slack variables.

Xn+i = bj —Zle ajjxj fori=1,..

Matrix form:
max c’x
s.t.
Ax = b,
x > 0
where

February 19, 2019
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(A:K)‘;r .%MA. Zy = :{a-,‘z.‘o—

Ker *% =1 ~a :l’i
T - -- din 1 0 01 [ bl i
a1 ... d2n 01 0 b2
/q:: ’ b - I
| aml “ o amn 0 0 ]. i | bm _

Note: A has full rowrank, which means that the rows in A are

linearly independent. a‘ o B [....,,.,.,

Ve i ~J
(:) ’ xn:+1 >) /)D: [ 'ool:(

i | Xn+m

4/27
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The objective function is ¢"x = Y7, ¢jx;.

The simplex algorithm will in each iteration have split the variables
into two groups: the basic and the nonbasic variables. Will as
usual let B and N be the index sets of, respectively, the basic
variables and the nonbasic variables.

We let Ag and Ay be the submatrices of A which corresponds to
the columns with indices B and N, respectively. So, we have

PrA=[As An] sPgutwm. o X
Note: here B = {1,..., m}, but this is just to simplify the
notation. In general the basis indices are spread out.

Mathematically we can imagine permuting columns in A and
elements in x (correspondingly) so that we have the form above.

5/27
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Primal simplex algorithm

Split x and ¢ similarly as

February 19, 2019

With that
XB
Ax = [AB AN][ ] = Ag xg + An XN,
XN
T T T1|*B T T
c’™x = [ ¢ ][ ] = chxg + cpxn.
XN

The set of equations Ax = b is now

ol

ﬁ|3°

Apxg + Ayxy = b

Ag*

6/27
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We now assume that Ag is nonsingular; Ag is then called a basis
in A. The columns in Ag are then a basis for IR™ (i.e., m linearly
independent vectors in IR™). Solve the set of equations:

xg = Aglb — AZ'Anxn (1)

which expresses the basis variables xg through the nonbasic
variables x.

Note: Any solution of Ax = b can be written in this form

XB . . . .
X = where xp is chosen appropriately and xg is determined
XN

uniquely based on (1).
We now eliminate xg from the objective function:
n = c‘_gpr + CI_\';-XN =
Tra—1 -1 T _
= C‘;—Aglb — ((AglAN)TCB — CN)TXN.

February 19, 2019
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We now have
|
n = C;_Aélb + (CN—(AEIAN)TCB)TXN

xXg = Ag'b — Az Anxn

which is the dictionary we have used so far. Here

cgAg'b = 7
(en — (Ag'AN)Teg)T = [g]
Ag'b = [b]

where the vectors on the right-hand side have components indexed
with i € B and j € N.

The basic solution Associated to the dictionary (the choice of basis
B) is
Xy = 0, xj = Ag'b.

8/27
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Will now look at the dual. Recall the correspondence
» the primal variable x; corresponds to the dual slack variable z;

» the primal slack variable w; corresponds to the dual slack
variable y;

We say that x; and z; are complementary, and that w; and y; are
complementary. Complementary variables have opposite roles in the
equations: they are on the opposite sides.

This means that: a variable is in basis if and only if the
complementary variable is out of basis.

\Vtﬁ z"'--l-a.' /,‘2‘: i

o

z
Nta

9/27
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February 19, 2019

Example: \|/
n = 0 + 4q + x + 3x3
(I)) wi = 1 — x3 — 4x

___:£:> wo = 3 — 3x1 + X2 — X3

£ = 0 - »n - 3

z1 = —4 4+ y1i + 3y

(D) B
zz = -1 + 4n — y
zz = —3 + Y2

Initially x1 is not in the basis in (P), while the complementary
variable z; is in basis in (D) and so on. Pivot now in (P) by taking
x3 into basis and w; out of basis. By corresponding pivot in (D):
z3 (complementary of x3 ) goes out of basis and y, (complementary

of wy) goes into basis.

10/ 27
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In each pivot in (P) one basic variable and one nonbasic variable
switch roles. By a corresponding pivot in (D) the complementary
variables in (D) will also switch roles, but the opposite way.

This means that complementary variables still have opposite roles
when it comes to being in basis. Because of this complementary
property we choose to arrange the variables in the two problems like

this:
(Xls"'axnswla"'awm) — (Xla---JXnaxn-I—la---JXn-l-m)
(zls"'aznayls"'sym) — (217"'Jznazn-|-1:'"Jzn-l-m)
So then x; and z; are complementary for j =1,...,n+ m. In

particular, the basic variables in (D) be zy (not zg!).

/CO""\'J I)LCK- . J_/ é-) <
B> )
BASIC ZD < %)\/

NV-BATIC Zy £ > )y
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Because of the negative transpose property the dual dictionary
(with basis B) is given by:

£ = —chAZ'b - (Ag'b)Tz

zZN = (AglAN)TCB——CN + (AglAN)TZB.

The corresponding dual basic solution for this dictionary is
x * -1 T
Zp = O, N = (AB AN) CB — Cpn.-

We now introduce
n* = cg Ag'b

which is the value of the objective function n in (P) for the basis
solution associated to B.

February 19, 2019
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Conclusion: primal and dual dictionary for basis B now becomes

(p) -7 — @) )

-1
XB = XE — AB ANXN

) <=7 - 5=

zy = ZK, + (AEIAN)TZB

(3)

Note the negative transpose property.

Nk
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simplex algorithm (primal) in short version:

> starts with a basis B so that xj is feasible in (P)
» makes thereafter a sequence of pivots.

» each pivot is to find a neighboring basis (that equals the
previous basis except for one index) so that 7 increases and
also determine the corresponding primal- and dual basic
solutions.

The simplex algorithm in matrix form will find the same solutions
(in each iteration) as the dictionary approach. The difference is just
that we are now going to operate with matrices and vectors. We
use the notation from the dictionary form above.

14 /27
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An iteration in the simplex algorithm:

Step 1.
Step 2.

Step 3.

Test optimality. If zy, > 0, stop. The present basic solution is
optimal.

Choose entering basic variable. Choose an index j € N where
z; < 0. Call x; entering basis variable.

Calculate the primal search direction. Will now let xy = te;
where ¢; is the j'th unit vector; this determines the change of
(primal) nonbasic variables. The primal basic variables will
then be given by (see (2))

xg = xj — Ag'Ante; = xj — t - Axg (4)
where the search direction is given by
Axg = /QE;1/4AIQI,

(Axg contains the coordinates of the jth column in Ay
expressed in basis Ag.)

February 19, 2019
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Step 4.

/

Step 5.

Calculate primal step length. We choose t as large as possible
so that xg still is nonnegative. From equation (4) we get that
the new value of the basic variable x; is

' ¥e 70

.= ;k_ A 4
NEXCTE X D

So if A; <0 for all i, the problem (P) is unbounded. P - .*
Otherwise the maximal t is given by - =t

t = min{x’/A;: A; > 0}. (5) ¢

Based on steps 3 and 4 we can determine the new primal
solution (see Step 8).

Choose the leaving basic variable. Choose an index i where the
minimum occurred in (5), and let x; be the leaving basic
variable.

16 / 27
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Step 6.

Step 7.

Calculate the dual search direction. It still remains to find the
change in the dual variables (we need these to find the new
coefficients in the objective function in (P)). This is
determined by the choice of i and j over. Since x; leaves basis
in (P), the complementary variable z; will go into basis in (D),
so it has to be increased from zero to a certain value s. The

dual basic variables are then given by (see (3)) Z.2D
<
zy = zjy + (Ag'An) Tsei = zjy — s - Azy (6)
where the search direction is given by &.=N 5‘:

B

Azy = —(Ag'An) e

Calculate the dual step length. We can determine the dual
step length s based on that z; leaves basis (which happens
because the complementary variable x; goes into primal basis).
Since z; becomes zero we get from (6) that

5= ZJ'*/AJ'.

17/ 27
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Step 8. Update primal and dual solution. Primal solution is updated by
x{:=t, xg:=xg—t-Axg
and dual solution is updated by
zi=s, zy:=2zy— s Azy.

Step 9. Update basis. Finally the basis is updated by

B —(B\{})U{J}

V:=(ivs { af V{}

» example: see section 6.3 in Vanderbei's book

Final comments:

» dual simplex in matrix form: see section 6.4

» summary: see slide number 2.

18 / 27
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