
LP. Lecture 4

Chapter 4: efficiency of the simplex algorithm

I how to measure efficiency?
I worst case analysis, the Klee-Minty cube
I mean analysis and in practise

1 / 19



Status

How far are we now in our LP story?

I simplex method (Phase I and II)
I problems: degeneracy and cycling
I solution: anticycling rules, perturbations
I the fundamental theorem of LP

Next question: how good is the simplex algorithm ?

But: first a bit on equivalent optimization problems!

2 / 19



Equivalent optimization problems

Often it is useful to rewrite an optimization problem into a more
convenient form. Then it is important to end up with an
“equivalent optimization problem”. Let us clarify what this means.

Let P and Q denote two optimization problems, with variable
vectors x ∈ IRn in P and y ∈ IRk in Q. Here n and k may be
different.
We say that P and Q are equivalent if

1. P is feasible if and only if Q is feasible.
2. P is unbounded if and only if Q is unbounded.
3. P has an optimal solution if and only if Q has an optimal

solution. Furthermore, there is a function f : IRn → IRk such
that x is optimal in P if and only if f (x) is optimal in Q.

3 / 19



Note that one can prove that there is a symmetry here: it does not
matter if the order of P and Q is interchanged in this definition.

As an example, and an exercise, consider the problems

P: max{cT x : Ax ≤ b}
Q: max{cT (x ′ − x ′′) : A(x ′ − x ′′) ≤ b, x ′, x ′′ ≥ O}

Show that P and Q are equivalent!

LP problems may, for instance, have some variables that are
nonnegative (or nonpositive), some variables that are free; there
may be inequalities (≤ og ≥), and equations. Learn how to rewrite
such problems into equivalent LP’s.

4 / 19



Efficiency

Two types of efficiency measures exist for algorithms:
I worst case: the maximum number of arithmetic operations for

problem (instances) of a given size.
I mean (average): the mean og expected number of arithmetic

operations for problem (instances) of a given size.
LP: the computational time increases when the number of variables
or constraints is increased. So computational time is some function
of “problem size”.

How can we measure problem size?
I simple approach: counting the numbers in input, i.e.,

m× (n + 1) in LP. Weakness: in “real problems” (where m and
n are large) many entries in the coef. matrix are zero. This
may be exploited in the simplex algorithm to speed up the
computations.

5 / 19



I more accurate: the number of nonzeros. Weakness: arithmetic
operations with large numbers take longer time than they do
for smaller numbers. (I would rather compute 14 · 7 than
832573928 · 3722984, right!)

I even more accurate: the number of bits needed to store all the
numbers on the computer.

How can we measure the total work (complexity) of an algorithm?
I computational time (CPU)
I the number of iterations
I the number of elementary arithmetic operations.

Our choice here: we simply use m and n as measures of problem
size and the number of pivots as complexity measure.

6 / 19



Want to consider worst case analysis of the simplex algorithm.
The answer will be, unfortunately, that the method in theory is not
good. In practice, however, the situation is the opposite: the
method works excellently!

The “explanation”: the “hard LP problems” do not show up in real
world problems.

In 1972 V.Klee and G.J.Minty found a class of LP problems that
“kills” the simplex algorithm with the usual pivot rule (largest
coefficient rule).

7 / 19



The LP problem has n variables and it turns out that the number
of pivots required is 2n − 1. Thus, the number of pivots grows
exponentially fast in n (the number of variables). Even for moderate
values of n this number of iterations is hoplessly big! To indicate
this, consider the following table given computational time for
(assuming one million pivots per second, which is very optimistic!):

n : 10 20 50 100
n2 : 100 400 2500 10000
2n : 1024 1048576 1.125899e+15 1.267650e+30
tid 0.001 sec. 1.0 sec. 35 years 4.0e+16 years

We shall investigate this LP problem. The idea is to deform the
cube [0, 1]n in IRn in such a way that the simplex algorithm is
forced to go through all the 2n vertices! This gives 2n − 1 pivots.

8 / 19



Here is the Klee-Minty LP problem:

max
∑n

j=1 10
n−jxj

s.t.

2
∑i−1

j=1 10
i−jxj + xi ≤ 100i−1 for i = 1, . . . , n

xj ≥ 0 for j = 1, . . . , n.

Interpretation of the constraints:
I i = 1: x1 ≤ 1
I i = 2: 20x1 + x2 ≤ 100, so x2 ≤ 100− 20x1 ≈ 100 since

0 ≤ x1 ≤ 1.
I i = 3: 200x1 + 20x2 + x3 ≤ 10000, so

x3 ≤ 10000− 200x1 − 20x2 ≈ 10000 since 0 ≤ x1 ≤ 1 and
0 ≤ x2 ≤ 100.

I ...

9 / 19



So roughly we have the constraints

0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 100

...
0 ≤ xn ≤ 100n−1

so that the set P of feasible solutions is roughly an n-dimensional
rectangle (cube). P is therefore called the Klee-Minty cube.

To simplify the analysis we modify the problem a bit.
I choose numbers bi such that 1 = b1 � b2 � · · · � bn. For

instance, choose b1 so much smaller than b2 that even if we
multiply by certain numbers in the course of the simplex
algorithm, the new value of b1 will still be far less than the
new value of b2. Think about the bi ’s ar independent
variables; one can find appropriate values for these later.

10 / 19



I in the Klee-Minty problem we first replace the right side
100i−1 with bi . Note that the old right sides are increased by
a factor of 100 for each new row, and we have kept this intact
by the choice of the bi -s.

I we then replace the right side bi by

i−1∑
j=1

10i−jbj + bi .

This is a “minor alteration” because the first term is a lot
smaller than bi (because b1, . . . , bi−1 are suitably small in
comparison to bi .)

I finally we change the objective function in the LP problem by
subtracting

(1/2)
i−1∑
j=1

10n−jbj .

11 / 19



The result is a modified Klee-Minty problem:

max
∑n

j=1 10
n−jxj − (1/2)

∑i−1
j=1 10

n−jbj

s.t.

2
∑i−1

j=1 10
i−jxj + xi ≤

∑i−1
j=1 10

i−jbj + bi for i ≤ n
xj ≥ 0 for j ≤ n.

Note that the right-hand sides are positive, so we don’t need Phase
I of the simplex method.

Result: the simplex algorithm with the “largest coefficient pivot
rule” uses 2n − 1 pivots to solve the modified Klee-Minty problem.

We will let the proof of this the be an exercise (Ex. 4.5 and 4.6 i
Vanderbei).

We now solve the modified Klee-Minty problem for n = 3.
Hopefully we will see a pattern which is valid for all n.

12 / 19



Dictionary 0:

η = −100
2 b1 − 10

2 b2 − 1
2b3 + 100x1 + 10x2 + x3

w1 = b1 − x1

w2 = 10b1 + b2 − 20x1 − x2

w3 = 100b1 + 10b2 + b3 − 200x1 − 20x2 − x3

Here x1 will go into basis by the largest coefficient rule. Since b1 is
a lot smaller than b2 and b3, w1 will leave basis. Complete the
pivot (check the calculations based on x1 = b1 − w1).

Dictionary 1:

η = 100
2 b1 − 10

2 b2 − 1
2b3 − 100w1 + 10x2 + x3

x1 = b1 − w1

w2 = −10b1 + b2 + 20w1 − x2

w3 = −100b1 + 10b2 + b3 + 200w1 − 20x2 − x3

13 / 19



Fantastic! The new list of basis contains the same numbers apart
from some alterations of sign! The alterations are:

I x1 and w1 switched roles
I only alterations in the two columns for x1 and b1

I and these two columns are multiplied by -1, apart from in the
pivot equation, where there is no alteration of sign

Now x2 goes in to basis and w2 out.
Dictionary 2:

η = −100
2 b1 + 10

2 b2 − 1
2b3 + 100w1 − 10w2 + x3

x1 = b1 − w1

x2 = −10b1 + b2 + 20w1 − w2

w3 = 100b1 − 10b2 + b3 − 200w1 + 20w2 − x3

14 / 19



Dictionary 3:

η = 100
2 b1 + 10

2 b2 − 1
2b3 − 100x1 − 10w2 + x3

w1 = b1 − x1

x2 = 10b1 + b2 − 20x1 − w2

w3 = −100b1 − 10b2 + b3 + 200x1 + 20w2 − x3

Dictionary 4:

η = −100
2 b1 − 10

2 b2 + 1
2b3 + 100x1 + 10w2 − w3

w1 = b1 − x1

x2 = 10b1 + b2 − 20x1 − w2

x3 = −100b1 − 10b2 + b3 + 200x1 + 20w2 − w3

15 / 19



Dictionary 5:

η = 100
2 b1 − 10

2 b2 + 1
2b3 − 100w1 + 10w2 − w3

x1 = b1 − w1

x2 = −10b1 + b2 + 20w1 − w2

x3 = 100b1 − 10b2 + b3 − 200w1 + 20w2 − w3

Dictionary 6:

η = −100
2 b1 + 10

2 b2 + 1
2b3 + 100w1 − 10x2 − w3

x1 = b1 − w1

w2 = −10b1 + b2 + 20w1 − x2

x3 = −100b1 + 10b2 + b3 + 200w1 − 20x2 − w3

16 / 19



Dictionary 7:

η = 100
2 b1 + 10

2 b2 + 1
2b3 − 100x1 − 10x2 − w3

w1 = b1 − x1

w2 = 10b1 + b2 − 20x1 − x2

x3 = 100b1 + 10b2 + b3 − 200x1 − 20x2 − w3

Optimal! Therefore: 7 = 23 − 1 pivots.

Observations:
I in each pivot xj and wj switch roles for a certain j
I apart from alterations of signs all the numbers are preserved

during the pivots
I but how does the sign alter? Ex. 4.5 and 4.6!
I the problem could be solved with only one pivot, if we instead

of x1 had taken x3 in to basis! But the choice was controlled
by the rule of pivot.

17 / 19



Comments on efficiency and LP

I Are there other pivot rules for the simplex algorithm that
always avoid 2n pivots ??? We would prefer if the number of
pivots do not grow faster than f.ex. n2 or n3 (or a polynomial
in n = number of variables)!

I The answer is unknown! But for all suggested pivot rules
someone has found 2n “contradictions”.

I K.-H. Borgwardt has given a statistical analysis which shows
that the expected number of pivots (when the LP problems
are “drawn randomly”) grows as n3m1/(n−1)

I In practice one assumes that the number of pivots typically
lies between m and 2m. This is very good! Note that the
number of variables n matter less for the number of pivots
(even though the calculation time increases by n).

18 / 19



Comments on efficiency and LP

I In 1979 the ellipsoid method was developed by L.Khachian:
first polynomial time algorithm for LP. This was a theoretical
breakthrough. This algorithm is theoretically “good”, but
hopeless in practise!

I In 1984 N. Karamarkar published a new LP algorithm based
on a different set of ideas: unlike the simplex algorithm, a
series of points, which are not basic solutions, are made; these
points lie in the interior of the feasible set.

I During the last years a very active field of research has been
interior point methods for LP. Part 3 of Vanderbei’s book
treats these methods.

19 / 19


