
LP. Lecture 6: Ch. 6: the simplex method in matrix form,
and Section 7.1: sensitivity analysis

I matrix notation
I simplex algorithm in matrix notation
I example
I negative transpose property: proof
I sensitivity analysis (section 7.1)

1 / 27

Matrix notation

Dictionary contra matrix form:
I dictionary best for understanding simplex algorithm and

calculation by hand of minor examples
I in larger calculation the simplex algorithm in matrix form is

used.
I matrix form is more efficient. Uses numerical linear algebra.
I important questions: (i) pricing, (ii) quick updating of basis,

(iii) LU-factorization, (iv) exploiting sparsity

We will just explain the algorithm in matrix form, without
discussing the numerical questions.

2 / 27

Consider LP problem in standard form

max
∑n

j=1 cjxj

s.t. ∑n
j=1 ai ,jxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n.

Converting to equations by using slack variables.

xn+i = bi −
∑n

j=1 ai ,jxj for i = 1, . . . ,m.

Matrix form:
max cT x
s.t.

Ax = b,
x ≥ O

where

3 / 27

A =


a11 . . . a1n 1 0 . . . 0
a21 . . . a2n 0 1 . . . 0

...
...

. . .

am1 . . . amn 0 0 1

 , b =


b1

b2

...
bm

 ,

Note: A has full rowrank, which means that the rows in A are
linearly independent.

c =



c1

...
cn

0
...
0


, x =



x1

...
xn

xn+1

...
xn+m


4 / 27

The objective function is cT x =
∑n

j=1 cjxj .

The simplex algorithm will in each iteration have split the variables
into two groups: the basic and the nonbasic variables. Will as
usual let B and N be the index sets of, respectively, the basic
variables and the nonbasic variables.

We let AB and AN be the submatrices of A which corresponds to
the columns with indices B and N, respectively. So, we have

A =
[

AB AN
]

Note: here B = {1, . . . ,m}, but this is just to simplify the
notation. In general the basis indices are spread out.
Mathematically we can imagine permuting columns in A and
elements in x (correspondingly) so that we have the form above.

5 / 27

Primal simplex algorithm
Split x and c similarly as

x =

[
xB

xN

]
, c =

[
cB

cN

]

With that

Ax =
[

AB AN
] [xB

xN

]
= AB xB + AN xN ,

cT x =
[

cT
B cT

N
] [xB

xN

]
= cT

B xB + cT
N xN .

The set of equations Ax = b is now

ABxB + ANxN = b

6 / 27

We now assume that AB is nonsingular; AB is then called a basis
in A. The columns in AB are then a basis for IRm (i.e., m linearly
independent vectors in IRm). Solve the set of equations:

xB = A−1
B b − A−1

B ANxN (1)

which expresses the basis variables xB through the nonbasic
variables xN .

Note: Any solution of Ax = b can be written in this form

x =

[
xB

xN

]
where xN is chosen appropriately and xB is determined

uniquely based on (1).

We now eliminate xB from the objective function:

η = cT
B xB + cT

N xN =

= cT
B (A−1

B b − A−1
B ANxN) + cT

N xN =

= cT
B A−1

B b − ((A−1
B AN)T cB − cN)T xN .

7 / 27

We now have

η = cT
B A−1

B b + (cN − (A−1
B AN)T cB)T xN

xB = A−1
B b − A−1

B ANxN

which is the dictionary we have used so far. Here

cT
B A−1

B b = η̄

(cN − (A−1
B AN)T cB)T = [c̄j]

A−1
B b = [b̄i]

A−1
B N = [āij].

where the vectors on the right-hand side have components indexed
with i ∈ B and j ∈ N.

The basic solution Associated to the dictionary (the choice of basis
B) is

x∗N = O, x∗B = A−1
B b.

8 / 27

Will now look at the dual. Recall the correspondence
I the primal variable xj corresponds to the dual slack variable zj

I the primal slack variable wi corresponds to the dual slack
variable yi

We say that xj and zj are complementary, and that wi and yi are
complementary. Complementary variables have opposite roles in the
equations: they are on the opposite sides.

This means that: a variable is in basis if and only if the
complementary variable is out of basis.

9 / 27

Example:

(P)
η = 0 + 4x1 + x2 + 3x3

w1 = 1 − x1 − 4x2

w2 = 3 − 3x1 + x2 − x3

(D)

−ξ = 0 − y1 − 3y2

z1 = −4 + y1 + 3y2

z2 = −1 + 4y1 − y2

z3 = −3 + y2

Initially x1 is not in the basis in (P), while the complementary
variable z1 is in basis in (D) and so on. Pivot now in (P) by taking
x3 into basis and w2 out of basis. By corresponding pivot in (D):
z3 (complementary of x3) goes out of basis and y2 (complementary
of w2) goes into basis.

10 / 27

In each pivot in (P) one basic variable and one nonbasic variable
switch roles. By a corresponding pivot in (D) the complementary
variables in (D) will also switch roles, but the opposite way.

This means that complementary variables still have opposite roles
when it comes to being in basis. Because of this complementary
property we choose to arrange the variables in the two problems like
this:

(x1, . . . , xn,w1, . . . ,wm) → (x1, . . . , xn, xn+1, . . . , xn+m)

(z1, . . . , zn, y1, . . . , ym) → (z1, . . . , zn, zn+1, . . . , zn+m)

So then xj and zj are complementary for j = 1, . . . , n + m. In
particular, the basic variables in (D) be zN (not zB !).

11 / 27

Because of the negative transpose property the dual dictionary
(with basis B) is given by:

−ξ = −cT
B A−1

B b − (A−1
B b)T zB

zN = (A−1
B AN)T cB − cN + (A−1

B AN)T zB .

The corresponding dual basic solution for this dictionary is

z∗B = O, z∗N = (A−1
B AN)T cB − cN .

We now introduce
η∗ = cT

B A−1
B b

which is the value of the objective function η in (P) for the basis
solution associated to B .

12 / 27

Conclusion: primal and dual dictionary for basis B now becomes

η = η∗ − (z∗N)T xN

xB = x∗B − A−1
B ANxN

(2)

−ξ = −η∗ − (x∗B)T zB

zN = z∗N + (A−1
B AN)T zB

(3)

Note the negative transpose property.

13 / 27

simplex algorithm (primal) in short version:

I starts with a basis B so that x∗B is feasible in (P)
I makes thereafter a sequence of pivots.
I each pivot is to find a neighboring basis (that equals the

previous basis except for one index) so that η increases and
also determine the corresponding primal- and dual basic
solutions.

The simplex algorithm in matrix form will find the same solutions
(in each iteration) as the dictionary approach. The difference is just
that we are now going to operate with matrices and vectors. We
use the notation from the dictionary form above.

14 / 27

An iteration in the simplex algorithm:
Step 1. Test optimality. If z∗N ≥ 0, stop. The present basic solution is

optimal.
Step 2. Choose entering basic variable. Choose an index j ∈ N where

z∗j < 0. Call xj entering basis variable.
Step 3. Calculate the primal search direction. Will now let xN = tej

where ej is the j ’th unit vector; this determines the change of
(primal) nonbasic variables. The primal basic variables will
then be given by (see (2))

xB = x∗B − A−1
B ANtej = x∗B − t ·∆xB (4)

where the search direction is given by

∆xB = A−1
B ANej .

(∆xB contains the coordinates of the jth column in AN
expressed in basis AB .)

15 / 27

Step 4. Calculate primal step length. We choose t as large as possible
so that xB still is nonnegative. From equation (4) we get that
the new value of the basic variable xi is

xi = x∗i − t ·∆i .

So if ∆i ≤ 0 for all i , the problem (P) is unbounded.
Otherwise the maximal t is given by

t = min{x∗i /∆i : ∆i > 0}. (5)

Based on steps 3 and 4 we can determine the new primal
solution (see Step 8).

Step 5. Choose the leaving basic variable. Choose an index i where the
minimum occurred in (5), and let xi be the leaving basic
variable.

16 / 27

Step 6. Calculate the dual search direction. It still remains to find the
change in the dual variables (we need these to find the new
coefficients in the objective function in (P)). This is
determined by the choice of i and j over. Since xi leaves basis
in (P), the complementary variable zi will go into basis in (D),
so it has to be increased from zero to a certain value s. The
dual basic variables are then given by (see (3))

zN = z∗N + (A−1
B AN)T sei = z∗N − s ·∆zN (6)

where the search direction is given by

∆zN = −(A−1
B AN)T ei .

Step 7. Calculate the dual step length. We can determine the dual
step length s based on that zj leaves basis (which happens
because the complementary variable xj goes into primal basis).
Since zj becomes zero we get from (6) that

s = z∗j /∆j .

17 / 27

Step 8. Update primal and dual solution. Primal solution is updated by

x∗j := t, x∗B := x∗B − t ·∆xB

and dual solution is updated by

z∗i := s, z∗N := z∗N − s ·∆zN .

Step 9. Update basis. Finally the basis is updated by

B := (B \ {i}) ∪ {j}.

Final comments:

I example: see section 6.3 in Vanderbei’s book
I dual simplex in matrix form: see section 6.4
I summary: see slide number 2.

18 / 27

Negative transpose property

Consider the primal LP problem (P)

max cT x s.t. Ax + w = b, x ,w ≥ O.

and the dual (D)

min bT y s.t. AT y − z = c , y , z ≥ O.

Alternatively: (P) is

max c̄T x̄ s.t. Āx̄ = b̄, x̄ ≥ O.

and the dual (D)

min b̂T ŷ s.t. ÂT ŷ = ĉ , ŷ ≥ O.

19 / 27

Here

Ā =
[

A I
]
, c̄ =

[
c
O

]
, x̄ =

[
x
w

]
,

and

Â =
[
−I AT]

, b̂ =

[
O
b

]
, ŷ =

[
z
y

]
,

Complementary - primal and dual basis: column j is in basis in Ā if
and only if column j is not in basis in Â.

In the beginning the m last columns in Ā are in basis, and the n
first columns in Â are in basis.

After a few pivots

Ā =
[

A I
]

=
[

ĀN ĀB
]
P

for a permutation matrix P . The columns in Ā are permuted. Since
the corresponding pivots occur in the dual

20 / 27

Â =
[
−I AT]

=
[

ÂB ÂN
]
P

But P−1 = PT , so PPT = I . Which means that

ĀÂT =
[

ĀN ĀB
]
PPT

[
ÂT

B
ÂT

N

]
= ĀN ÂT

B + ĀB ÂT
N

and in addition we have that

ĀÂT =
[

A I
] [−I

A

]
= −A + A = O.

So:
ĀN ÂT

B + ĀB ÂT
N = O

By some algebra we get that

Ā−1
B ĀN = −(Â−1

B ÂN)T

This shows the negative transpose property.
21 / 27

Sensitivity analysis

Sensitivity analysis (section 7.1): what happens with the solutions
when the parameters are changed?

Look at a question like this for LP: given an optimal basis, how
much can each coefficient in the objective function be altered
without the present basic solution becoming non optimal?

We can find the answer via duality!

Recall that when AB is the optimal basis we have

x∗B = A−1
B b,

y∗N = (A−1
B AN)T cB − cN ,

η∗ = cT
B A−1

B b.

22 / 27

So: assume that only c is altered (among the data). Then y∗N is
altered, but not x∗B . So if c is not altered too much, such that the
new vector y∗N is nonnegative, then x∗B will still be optimal!

Assume that c is altered to c + t ·∆c , where t is a number and ∆c
is an “perturbation vector” (often a unity vector). Then y∗N is
altered to y∗N + t ·∆yN where

∆yN = (A−1
B AN)T ∆cB −∆cN .

So the present basis will still be optimal (after the perturbation in
c) if

(∗) y∗N + t ·∆yN ≥ O.

The sensitivity analysis boils down to determining the smallest and
the largest value of t so that (∗) holds!!

23 / 27

Example:

max 5x1+ 4x2+ 3x3

s.t.
(i) 2x1+ 3x2+ x3 ≤ 5
(ii) 4x1+ x2+ 2x3 ≤ 11
(iii) 3x1+ 4x2+ 2x3 ≤ 8

x1, x2, x3 ≥ 0.

Optimal dictionary, where B = {3, 1, 5} and N = {4, 2, 6}

η = 13 − x4 − 3x2 − x6

x3 = 1 + 3x4 + x2 − 2x6

x1 = 2 − 2x4 − 2x2 + x6

x5 = 1 + 2x4 + 5x2

Note: be aware of the order of the variables in the matrix
calculations!

24 / 27

We want to look at a change of the coefficient 3 to x3 in the
obj.func.
Therefore, let ∆cB = (1, 0, 0)T and ∆cN = (0, 0, 0)T . The matrix
A−1

B AN is found from the optimal dictionary like this:

−A−1
B AN =

 3 1 −2
−2 −2 1
2 5 0

 which gives

∆yN = (A−1
B AN)T ∆cB −∆cN = −3 −1 2

2 2 −1
−2 −5 0


T  1

0
0

−
 0

0
0

 =

 −3−1
2

 .

25 / 27

So: B will be the optimal basis if

(∗) (y∗N + t ·∆yN)T = (1, 3, 1) + t · (−3,−1, 2) ≥ O

i.e. 1− 3t ≥ 0, 3− t ≥ 0, 1 + 2t ≥ 0.

This gives −1/2 ≤ t ≤ 1/3. So the coefficient of x3 (which was 3)
can vary between 3− 1/2 = 5/2 and 3 + 1/3 = 10/3.
Finally: note what happens if we use ∆cB = O !

This sensitivity analysis shows how important dictionaries (or the
concept of a basis) are to understand linear programming!

26 / 27

Further themes are:

I some game theory
I convexity (geometrical aspects of LP), and
I network flow problems.

27 / 27

