LP. Lecture 6: Ch. 6: the simplex method in matrix form, and Section 7.1: sensitivity analysis

- matrix notation
- simplex algorithm in matrix notation
- example
- negative transpose property: proof
- sensitivity analysis (section 7.1)

Matrix notation

Dictionary contra matrix form:

- dictionary best for understanding simplex algorithm and calculation by hand of minor examples
- in larger calculation the simplex algorithm in matrix form is used.
- matrix form is more efficient. Uses numerical linear algebra.
- important questions: (i) pricing, (ii) quick updating of basis, (iii) LU-factorization, (iv) exploiting sparsity

We will just explain the algorithm in matrix form, without discussing the numerical questions.

Consider LP problem in standard form

$$
\max \quad \sum_{j=1}^{n} c_{j} x_{j}
$$

s.t.

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i, j} x_{j} & \leq b_{i} \quad \text { for } i=1, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=1, \ldots, n .
\end{aligned}
$$

Converting to equations by using slack variables.

$$
x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i, j} x_{j} \text { for } i=1, \ldots, m
$$

Matrix form:

$$
\begin{array}{ll}
\max & c^{\top} x \\
\text { s.t. } & \\
& A x=b, \\
& x \geq 0
\end{array}
$$

where

$$
A=\left[\begin{array}{rrrrrrr}
a_{11} & \ldots & a_{1 n} & 1 & 0 & \ldots & 0 \\
a_{21} & \ldots & a_{2 n} & 0 & 1 & \ldots & 0 \\
\vdots & & \vdots & & & \ddots & \\
a_{m 1} & \ldots & a_{m n} & 0 & 0 & & 1
\end{array}\right], \quad b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right],
$$

Note: A has full rowrank, which means that the rows in A are linearly independent.

$$
c=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n} \\
0 \\
\vdots \\
0
\end{array}\right], \quad x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n} \\
x_{n+1} \\
\vdots \\
x_{n+m}
\end{array}\right]
$$

The objective function is $c^{T} x=\sum_{j=1}^{n} c_{j} x_{j}$.
The simplex algorithm will in each iteration have split the variables into two groups: the basic and the nonbasic variables. Will as usual let B and N be the index sets of, respectively, the basic variables and the nonbasic variables.

We let A_{B} and A_{N} be the submatrices of A which corresponds to the columns with indices B and N, respectively. So, we have

$$
A=\left[\begin{array}{ll}
A_{B} & A_{N}
\end{array}\right]
$$

Note: here $B=\{1, \ldots, m\}$, but this is just to simplify the notation. In general the basis indices are spread out. Mathematically we can imagine permuting columns in A and elements in x (correspondingly) so that we have the form above.

Primal simplex algorithm

Split x and c similarly as

$$
x=\left[\begin{array}{l}
x_{B} \\
x_{N}
\end{array}\right], \quad c=\left[\begin{array}{l}
c_{B} \\
c_{N}
\end{array}\right]
$$

With that

$$
\begin{aligned}
A x & =\left[\begin{array}{ll}
A_{B} & A_{N}
\end{array}\right]\left[\begin{array}{c}
x_{B} \\
x_{N}
\end{array}\right]=A_{B} x_{B}+A_{N} x_{N} \\
c^{T} x & =\left[\begin{array}{ll}
c_{B}^{T} & c_{N}^{T}
\end{array}\right]\left[\begin{array}{c}
x_{B} \\
x_{N}
\end{array}\right]=c_{B}^{T} x_{B}+c_{N}^{T} x_{N}
\end{aligned}
$$

The set of equations $A x=b$ is now

$$
A_{B} x_{B}+A_{N} x_{N}=b
$$

We now assume that A_{B} is nonsingular; A_{B} is then called a basis in A. The columns in A_{B} are then a basis for \mathbb{R}^{m} (i.e., m linearly independent vectors in \mathbb{R}^{m}). Solve the set of equations:

$$
\begin{equation*}
x_{B}=A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N} \tag{1}
\end{equation*}
$$

which expresses the basis variables x_{B} through the nonbasic variables x_{N}.
Note: Any solution of $A x=b$ can be written in this form
$x=\left[\begin{array}{l}x_{B} \\ x_{N}\end{array}\right]$ where x_{N} is chosen appropriately and x_{B} is determined uniquely based on (1).
We now eliminate x_{B} from the objective function:

$$
\begin{aligned}
\eta & =c_{B}^{T} x_{B}+c_{N}^{T} x_{N}= \\
& =c_{B}^{T}\left(A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N}\right)+c_{N}^{T} x_{N}= \\
& =c_{B}^{T} A_{B}^{-1} b-\left(\left(A_{B}^{-1} A_{N}\right)^{T} c_{B}-c_{N}\right)^{T} x_{N} .
\end{aligned}
$$

We now have

$$
\begin{array}{r}
\eta=c_{B}^{T} A_{B}^{-1} b+\left(c_{N}-\left(A_{B}^{-1} A_{N}\right)^{T} c_{B}\right)^{T} x_{N} \\
\hline x_{B}=
\end{array} A_{B}^{-1} b-r A_{N}^{-1} A_{N} x_{N}
$$

which is the dictionary we have used so far. Here

$$
\begin{aligned}
c_{B}^{T} A_{B}^{-1} b & =\bar{\eta} \\
\left(c_{N}-\left(A_{B}^{-1} A_{N}\right)^{T} c_{B}\right)^{T} & =\left[\bar{c}_{j}\right] \\
A_{B}^{-1} b & =\left[\bar{b}_{i}\right] \\
A_{B}^{-1} N & =\left[\bar{a}_{i j}\right] .
\end{aligned}
$$

where the vectors on the right-hand side have components indexed with $i \in B$ and $j \in N$.

The basic solution Associated to the dictionary (the choice of basis B) is

$$
x_{N}^{*}=O, x_{B}^{*}=A_{B}^{-1} b
$$

Will now look at the dual. Recall the correspondence

- the primal variable x_{j} corresponds to the dual slack variable z_{j}
- the primal slack variable w_{i} corresponds to the dual slack variable y_{i}
We say that x_{j} and z_{j} are complementary, and that w_{i} and y_{i} are complementary. Complementary variables have opposite roles in the equations: they are on the opposite sides.

This means that: a variable is in basis if and only if the complementary variable is out of basis.

Example:

$$
\begin{aligned}
& \text { (P) } \begin{aligned}
\eta & =0+4 x_{1}+x_{2}+3 x_{3} \\
w_{1} & =1-x_{1}-4 x_{2} \\
w_{2} & =3-3 x_{1}+x_{2}-x_{3}
\end{aligned} \\
& \begin{array}{rr}
-\xi & =0-y_{1}-3 y_{2} \\
\hline z_{1} & =-4+y_{1}+3 y_{2}
\end{array} \\
& z_{2}=-1+4 y_{1}-y_{2} \\
& z_{3}=-3+y_{2}
\end{aligned}
$$

Initially x_{1} is not in the basis in (P), while the complementary variable z_{1} is in basis in (D) and so on. Pivot now in (P) by taking x_{3} into basis and w_{2} out of basis. By corresponding pivot in (D):
z_{3} (complementary of x_{3}) goes out of basis and y_{2} (complementary of w_{2}) goes into basis.

In each pivot in (P) one basic variable and one nonbasic variable switch roles. By a corresponding pivot in (D) the complementary variables in (D) will also switch roles, but the opposite way.

This means that complementary variables still have opposite roles when it comes to being in basis. Because of this complementary property we choose to arrange the variables in the two problems like this:

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{n}, w_{1}, \ldots, w_{m}\right) \rightarrow\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{n+m}\right) \\
& \left(z_{1}, \ldots, z_{n}, y_{1}, \ldots, y_{m}\right) \rightarrow\left(z_{1}, \ldots, z_{n}, z_{n+1}, \ldots, z_{n+m}\right)
\end{aligned}
$$

So then x_{j} and z_{j} are complementary for $j=1, \ldots, n+m$. In particular, the basic variables in (D) be $z_{N}\left(\right.$ not $z_{B}!$).

Because of the negative transpose property the dual dictionary (with basis B) is given by:

$$
\begin{array}{rrrr}
-\xi & = & -c_{B}^{T} A_{B}^{-1} b & -\left(A_{B}^{-1} b\right)^{T} z_{B} \\
\hline z_{N} & =\left(A_{B}^{-1} A_{N}\right)^{T} c_{B}-c_{N} & +\left(A_{B}^{-1} A_{N}\right)^{T} z_{B}
\end{array}
$$

The corresponding dual basic solution for this dictionary is

$$
z_{B}^{*}=O, z_{N}^{*}=\left(A_{B}^{-1} A_{N}\right)^{T} c_{B}-c_{N}
$$

We now introduce

$$
\eta^{*}=c_{B}^{T} A_{B}^{-1} b
$$

which is the value of the objective function η in (P) for the basis solution associated to B.

Conclusion: primal and dual dictionary for basis B now becomes

$$
\begin{array}{r}
\eta=\eta^{*}-\left(z_{N}^{*}\right)^{T} x_{N} \\
\hline x_{B}=x_{B}^{*}-A_{B}^{-1} A_{N} x_{N} \tag{3}\\
-\xi=-\eta^{*}-r\left(x_{B}^{*}\right)^{T} z_{B} \\
\hline z_{N}=z_{N}^{*}+\left(A_{B}^{-1} A_{N}\right)^{T} z_{B}
\end{array}
$$

Note the negative transpose property.

simplex algorithm (primal) in short version:

- starts with a basis B so that x_{B}^{*} is feasible in (P)
- makes thereafter a sequence of pivots.
- each pivot is to find a neighboring basis (that equals the previous basis except for one index) so that η increases and also determine the corresponding primal- and dual basic solutions.

The simplex algorithm in matrix form will find the same solutions (in each iteration) as the dictionary approach. The difference is just that we are now going to operate with matrices and vectors. We use the notation from the dictionary form above.

An iteration in the simplex algorithm:

Step 1. Test optimality. If $z_{N}^{*} \geq 0$, stop. The present basic solution is optimal.
Step 2. Choose entering basic variable. Choose an index $j \in N$ where $z_{j}^{*}<0$. Call x_{j} entering basis variable.
Step 3. Calculate the primal search direction. Will now let $x_{N}=t e_{j}$ where e_{j} is the j 'th unit vector; this determines the change of (primal) nonbasic variables. The primal basic variables will then be given by (see (2))

$$
\begin{equation*}
x_{B}=x_{B}^{*}-A_{B}^{-1} A_{N} t e_{j}=x_{B}^{*}-t \cdot \Delta x_{B} \tag{4}
\end{equation*}
$$

where the search direction is given by

$$
\Delta x_{B}=A_{B}^{-1} A_{N} e_{j} .
$$

(Δx_{B} contains the coordinates of the j th column in A_{N} expressed in basis A_{B}.)

Step 4. Calculate primal step length. We choose t as large as possible so that x_{B} still is nonnegative. From equation (4) we get that the new value of the basic variable x_{i} is

$$
x_{i}=x_{i}^{*}-t \cdot \Delta_{i} .
$$

So if $\Delta_{i} \leq 0$ for all i, the problem (P) is unbounded. Otherwise the maximal t is given by

$$
\begin{equation*}
t=\min \left\{x_{i}^{*} / \Delta_{i}: \Delta_{i}>0\right\} . \tag{5}
\end{equation*}
$$

Based on steps 3 and 4 we can determine the new primal solution (see Step 8).
Step 5. Choose the leaving basic variable. Choose an index i where the minimum occurred in (5), and let x_{i} be the leaving basic variable.

Step 6. Calculate the dual search direction. It still remains to find the change in the dual variables (we need these to find the new coefficients in the objective function in (P)). This is determined by the choice of i and j over. Since x_{i} leaves basis in (P), the complementary variable z_{i} will go into basis in (D), so it has to be increased from zero to a certain value s. The dual basic variables are then given by (see (3))

$$
\begin{equation*}
z_{N}=z_{N}^{*}+\left(A_{B}^{-1} A_{N}\right)^{T} s e_{i}=z_{N}^{*}-s \cdot \Delta z_{N} \tag{6}
\end{equation*}
$$

where the search direction is given by

$$
\Delta z_{N}=-\left(A_{B}^{-1} A_{N}\right)^{T} e_{i}
$$

Step 7. Calculate the dual step length. We can determine the dual step length s based on that z_{j} leaves basis (which happens because the complementary variable x_{j} goes into primal basis). Since z_{j} becomes zero we get from (6) that

$$
s=z_{j}^{*} / \Delta_{j}
$$

Step 8. Update primal and dual solution. Primal solution is updated by

$$
x_{j}^{*}:=t, \quad x_{B}^{*}:=x_{B}^{*}-t \cdot \Delta x_{B}
$$

and dual solution is updated by

$$
z_{i}^{*}:=s, \quad z_{N}^{*}:=z_{N}^{*}-s \cdot \Delta z_{N} .
$$

Step 9. Update basis. Finally the basis is updated by

$$
B:=(B \backslash\{i\}) \cup\{j\} .
$$

Final comments:

- example: see section 6.3 in Vanderbei's book
- dual simplex in matrix form: see section 6.4
- summary: see slide number 2 .

Negative transpose property

Consider the primal LP problem (P)

$$
\max c^{\top} x \text { s.t. } A x+w=b, \quad x, w \geq 0
$$

and the dual (D)

$$
\min b^{T} y \text { s.t. } A^{T} y-z=c, \quad y, z \geq 0
$$

Alternatively: (P) is

$$
\max \quad \bar{c}^{T} \bar{x} \quad \text { s.t. } \bar{A} \bar{x}=\bar{b}, \quad \bar{x} \geq 0 .
$$

and the dual (D)

$$
\min \hat{b}^{T} \hat{y} \quad \text { s.t. } \hat{A}^{T} \hat{y}=\hat{c}, \quad \hat{y} \geq 0
$$

Here

$$
\bar{A}=\left[\begin{array}{ll}
A & I
\end{array}\right], \quad \bar{c}=\left[\begin{array}{l}
c \\
O
\end{array}\right], \quad \bar{x}=\left[\begin{array}{l}
x \\
w
\end{array}\right],
$$

and

$$
\hat{A}=\left[\begin{array}{ll}
-1 & A^{T}
\end{array}\right], \hat{b}=\left[\begin{array}{l}
O \\
b
\end{array}\right], \hat{y}=\left[\begin{array}{l}
z \\
y
\end{array}\right]
$$

Complementary - primal and dual basis: column j is in basis in \bar{A} if and only if column j is not in basis in \hat{A}.
In the beginning the m last columns in \bar{A} are in basis, and the n first columns in \hat{A} are in basis.

After a few pivots

$$
\bar{A}=\left[\begin{array}{ll}
A & l
\end{array}\right]=\left[\begin{array}{ll}
\bar{A}_{N} & \bar{A}_{B}
\end{array}\right] P
$$

for a permutation matrix P. The columns in \bar{A} are permuted. Since the corresponding pivots occur in the dual

$$
\hat{A}=\left[\begin{array}{ll}
-1 & A^{T}
\end{array}\right]=\left[\begin{array}{ll}
\hat{A}_{B} & \hat{A}_{N}
\end{array}\right] P
$$

But $P^{-1}=P^{T}$, so $P P^{T}=I$. Which means that

$$
\bar{A} \hat{A}^{T}=\left[\begin{array}{ll}
\bar{A}_{N} & \bar{A}_{B}
\end{array}\right] P P^{T}\left[\begin{array}{l}
\hat{A}_{B}^{T} \\
\hat{A}_{N}^{T}
\end{array}\right]=\bar{A}_{N} \hat{A}_{B}^{T}+\bar{A}_{B} \hat{A}_{N}^{T}
$$

and in addition we have that

$$
\bar{A} \hat{A}^{T}=\left[\begin{array}{ll}
A & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
A
\end{array}\right]=-A+A=0 .
$$

So:

$$
\bar{A}_{N} \hat{A}_{B}^{T}+\bar{A}_{B} \hat{A}_{N}^{T}=0
$$

By some algebra we get that

$$
\bar{A}_{B}^{-1} \bar{A}_{N}=-\left(\hat{A}_{B}^{-1} \hat{A}_{N}\right)^{T}
$$

This shows the negative transpose property.

Sensitivity analysis

Sensitivity analysis (section 7.1): what happens with the solutions when the parameters are changed?

Look at a question like this for LP: given an optimal basis, how much can each coefficient in the objective function be altered without the present basic solution becoming non optimal?
We can find the answer via duality!
Recall that when A_{B} is the optimal basis we have

$$
\begin{aligned}
x_{B}^{*} & =A_{B}^{-1} b \\
y_{N}^{*} & =\left(A_{B}^{-1} A_{N}\right)^{T} c_{B}-c_{N} \\
\eta^{*} & =c_{B}^{T} A_{B}^{-1} b
\end{aligned}
$$

So: assume that only c is altered (among the data). Then y_{N}^{*} is altered, but not x_{B}^{*}. So if c is not altered too much, such that the new vector y_{N}^{*} is nonnegative, then x_{B}^{*} will still be optimal!
Assume that c is altered to $c+t \cdot \Delta c$, where t is a number and Δc is an "perturbation vector" (often a unity vector). Then y_{N}^{*} is altered to $y_{N}^{*}+t \cdot \Delta y_{N}$ where

$$
\Delta y_{N}=\left(A_{B}^{-1} A_{N}\right)^{T} \Delta c_{B}-\Delta c_{N}
$$

So the present basis will still be optimal (after the perturbation in c) if

$$
(*) y_{N}^{*}+t \cdot \Delta y_{N} \geq 0
$$

The sensitivity analysis boils down to determining the smallest and the largest value of t so that $(*)$ holds!!

Example:

$$
\begin{array}{llll}
\max & 5 x_{1}+4 x_{2}+ & 3 x_{3} & \\
\text { s.t. } & & \\
\text { (i) } & 2 x_{1}+3 x_{2}+\quad x_{3} & \leq 5 \\
\text { (ii) } & 4 x_{1}+x_{2}+\quad 2 x_{3} \leq 11 \\
\text { (iii) } & 3 x_{1}+4 x_{2}+2 x_{3} \leq 8 \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{array}
$$

Optimal dictionary, where $B=\{3,1,5\}$ and $N=\{4,2,6\}$

$$
\begin{aligned}
& \begin{array}{l}
\eta=13-x_{4}-3 x_{2}-x_{6} \\
x_{3}=1+3 x_{4}+x_{2}-2 x_{6}
\end{array} \\
& x_{1}=2-2 x_{4}-2 x_{2}+x_{6} \\
& x_{5}=1+2 x_{4}+5 x_{2}
\end{aligned}
$$

Note: be aware of the order of the variables in the matrix calculations!

We want to look at a change of the coefficient 3 to x_{3} in the obj.func.
Therefore, let $\Delta c_{B}=(1,0,0)^{T}$ and $\Delta c_{N}=(0,0,0)^{T}$. The matrix $A_{B}^{-1} A_{N}$ is found from the optimal dictionary like this:

$$
\begin{gathered}
-A_{B}^{-1} A_{N}=\left[\begin{array}{rrr}
3 & 1 & -2 \\
-2 & -2 & 1 \\
2 & 5 & 0
\end{array}\right] \text { which gives } \\
\Delta y_{N}=\left(A_{B}^{-1} A_{N}\right)^{T} \Delta c_{B}-\Delta c_{N}= \\
{\left[\begin{array}{rrr}
-3 & -1 & 2 \\
2 & 2 & -1 \\
-2 & -5 & 0
\end{array}\right]^{T}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{r}
-3 \\
-1 \\
2
\end{array}\right] .}
\end{gathered}
$$

So: B will be the optimal basis if

$$
\begin{gathered}
(*) \quad\left(y_{N}^{*}+t \cdot \Delta y_{N}\right)^{T}=(1,3,1)+t \cdot(-3,-1,2) \geq 0 \\
\text { i.e. } \quad 1-3 t \geq 0,3-t \geq 0,1+2 t \geq 0
\end{gathered}
$$

This gives $-1 / 2 \leq t \leq 1 / 3$. So the coefficient of x_{3} (which was 3) can vary between $3-1 / 2=5 / 2$ and $3+1 / 3=10 / 3$.
Finally: note what happens if we use $\Delta c_{B}=O$!
This sensitivity analysis shows how important dictionaries (or the concept of a basis) are to understand linear programming!

Further themes are:

- some game theory
- convexity (geometrical aspects of LP), and
- network flow problems.

