Answers to Exercises, Week 13, MAT3100, V20

Michael Floater

Exercises in Week 13 are: 19-24 from 'A mini-introduction to convexity' by Geir Dahl.
Exercise 19

$$
E=\left\{\epsilon=\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}\right): \epsilon_{i} \in\left\{a_{i}, b_{i}\right\}, i=1,2, \ldots, n\right\} .
$$

Exercise 20

We want the extreme points of

$$
P=\left\{x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2} \leq 1, x_{2} \leq 2\right\} .
$$

They are

$$
E=\{(0,0),(1,0),(1 / 2,1 / 2),(0,1 / 2)\}
$$

Exercise 21

We want the extreme points of

$$
P=\left\{x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{1}+x_{2}+x_{3} \leq 4, x_{1}+x_{2} \geq 1, x_{3} \leq 2\right\}
$$

They are

$$
E=\{(4,0,0),(0,4,0),(0,1,0),(1,0,0),(2,0,2),(0,2,2),(0,1,2),(1,0,2)\}
$$

Exercise 22

Use Fourier-Motzkin elimination to solve the inequalities in Exercise 20. Answer. The system of inequalities is

$$
\begin{aligned}
x_{1} & \geq 0, \\
x_{2} & \geq 0, \\
x_{1}+x_{2} & \leq 1, \\
x_{2} & \leq 2 .
\end{aligned}
$$

Gather all inequalities involving x_{1} :

$$
0 \leq x_{1} \leq 1-x_{2}
$$

This implies

$$
0 \leq 1-x_{2}
$$

or

$$
x_{2} \leq 1,
$$

and we add this to the remaining inequalities:

$$
\begin{aligned}
& x_{2} \leq 1, \\
& x_{2} \geq 0, \\
& x_{2} \leq 2,
\end{aligned}
$$

and reduce:

$$
0 \leq x_{2} \leq 1
$$

Hence the solution is

$$
\begin{aligned}
& 0 \leq x_{1} \leq 1-x_{2} \\
& 0 \leq x_{2} \leq 1
\end{aligned}
$$

Exercise 23

Use Fourier-Motzkin elimination to solve the inequalities in Exercise 21. Answer. The system of inequalities is

$$
\begin{aligned}
x_{1} & \geq 0, \\
x_{2} & \geq 0, \\
x_{3} & \geq 0, \\
x_{1}+x_{2}+x_{3} & \leq 4, \\
x_{1}+x_{2} & \geq 1, \\
x_{3} & \leq 2 .
\end{aligned}
$$

Gather all inequalities involving x_{1} :

$$
\max \left(0,1-x_{2}\right) \leq x_{1} \leq 4-x_{2}-x_{3}
$$

This implies

$$
\max \left(0,1-x_{2}\right) \leq 4-x_{2}-x_{3}
$$

or equivalently

$$
\begin{aligned}
0 & \leq 4-x_{2}-x_{3} \\
1-x_{2} & \leq 4-x_{2}-x_{3}
\end{aligned}
$$

or equivalently

$$
\begin{aligned}
x_{2}+x_{3} & \leq 4, \\
x_{3} & \leq 3,
\end{aligned}
$$

and we add these to the remaining inequalities:

$$
\begin{aligned}
x_{2}+x_{3} & \leq 4, \\
x_{3} & \leq 3, \\
x_{2} & \geq 0, \\
x_{3} & \geq 0, \\
x_{3} & \leq 2 .
\end{aligned}
$$

and reduce:

$$
\begin{aligned}
x_{2}+x_{3} & \leq 4, \\
x_{2} & \geq 0, \\
x_{3} & \geq 0, \\
x_{3} & \leq 2 .
\end{aligned}
$$

We now repeat the procedure, eliminating x_{2} :

$$
0 \leq x_{2} \leq 4-x_{3}
$$

Thus implies

$$
0 \leq 4-x_{3}
$$

or equivalently

$$
x_{3} \leq 4,
$$

and we add this to the remaining inequalities:

$$
\begin{aligned}
& x_{3} \leq 4, \\
& x_{3} \geq 0, \\
& x_{3} \leq 2 .
\end{aligned}
$$

We then reduce:

$$
0 \leq x_{3} \leq 2
$$

Hence the solution is

$$
\begin{aligned}
\max \left(0,1-x_{2}\right) & \leq x_{1} \leq 4-x_{2}-x_{3} \\
0 & \leq x_{2} \leq 4-x_{3} \\
0 & \leq x_{3} \leq 2
\end{aligned}
$$

Exercise 24

Use Fourier-Motzkin elimination in the case $n=2$ and $m=4$. Answer: The general system of inequalities is

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2} \leq b_{1}, \\
& a_{21} x_{1}+a_{22} x_{2} \leq b_{2}, \\
& a_{31} x_{1}+a_{32} x_{2} \leq b_{3}, \\
& a_{41} x_{1}+a_{42} x_{2} \leq b_{4} .
\end{aligned}
$$

Let $I^{+}=\left\{i: a_{i 1}>0\right\}, I^{0}=\left\{i: a_{i 1}=0\right\}, I^{-}=\left\{i: a_{i 1}<0\right\}$. Then the system is

$$
\begin{aligned}
x_{1} & \leq \frac{b_{i}}{a_{i, 1}}-\frac{a_{i, 2}}{a_{i, 1}} x_{2}, & & i \in I^{+}, \\
x_{1} & \geq \frac{b_{i}}{a_{i, 1}}-\frac{a_{i, 2}}{a_{i, 1}} x_{2}, & & i \in I^{-}, \\
a_{i, 2} x_{2} & \leq b_{i}, & & i \in I^{0} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\max _{i \in I^{-}}\left(\frac{b_{i}}{a_{i, 1}}-\frac{a_{i, 2}}{a_{i, 1}} x_{2}\right) \leq x_{1} \leq \min _{j \in I^{+}}\left(\frac{b_{j}}{a_{j, 1}}-\frac{a_{j, 2}}{a_{j, 1}} x_{2}\right) \tag{1}
\end{equation*}
$$

This is the inequality for x_{1}. It remains to solve for x_{2}. Due to (1),

$$
\max _{i \in I^{-}}\left(\frac{b_{i}}{a_{i, 1}}-\frac{a_{i, 2}}{a_{i, 1}} x_{2}\right) \leq \min _{j \in I^{+}}\left(\frac{b_{j}}{a_{j, 1}}-\frac{a_{j, 2}}{a_{j, 1}} x_{2}\right),
$$

or equivalently

$$
\begin{aligned}
& \frac{b_{i}}{a_{i, 1}}-\frac{a_{i, 2}}{a_{i, 1}} x_{2} \leq \frac{b_{j}}{a_{j, 1}}-\frac{a_{j, 2}}{a_{j, 1}} x_{2}, \quad i \in I^{-}, \quad j \in I^{+} \\
& \left(\frac{a_{j, 2}}{a_{j, 1}}-\frac{a_{i, 2}}{a_{i, 1}}\right) x_{2} \leq \frac{b_{j}}{a_{j, 1}}-\frac{b_{i}}{a_{i, 1}}, \quad i \in I^{-}, \quad j \in I^{+}
\end{aligned}
$$

Thus x_{2} solves the system

$$
\begin{gathered}
\left(\frac{a_{j, 2}}{a_{j, 1}}-\frac{a_{i, 2}}{a_{i, 1}}\right) x_{2} \leq \frac{b_{j}}{a_{j, 1}}-\frac{b_{i}}{a_{i, 1}}, \quad i \in I^{-}, j \in I^{+}, \\
a_{k, 2} x_{2} \leq b_{k}, \quad k \in I^{0} .
\end{gathered}
$$

