Answers to Exercises, Week 5, MAT3100, V20

Michael Floater

Exercises in Week 5 are: Ex. 4.1, 4.2, 4.4, 4.6, 4.7.

Exercise 4.1

Largest coefficient rule:

η	=		+	$4x_1$	+	$5\mathbf{x_2}$
w_1	=	9	—	$2x_1$	—	$2x_2$
w_2	=	4	—	x_1		
w_3	=	3			—	x_2
η	=	15	+	$4\mathbf{x_1}$	_	$5w_3$
$\mathbf{w_1}$	=	3	—	$2x_1$	+	$2w_3$
w_2	=	4	—	x_1		
x_2	=	3			—	w_3
η	=	21	_	2w	1 -	$- w_3$
x_1	=	1.5	_	0.5x	1 -	$-w_3$
w_2	=	2.5	+	0.5w	1 -	$- w_3$
x_2	=	3			_	$- w_3$

Two iterations required.

Smallest index rule:

η	=		+	$4\mathbf{x_1}$	+	$5x_2$
w_1	=	9	_	$2x_1$	—	$2x_2$
$\mathbf{w_2}$	=	4	—	x_1		
w_3	=	3			—	x_2
η	=	16	_	$4w_2$	+	$5\mathbf{x_2}$
$\frac{\eta}{\mathbf{w_1}}$	=	16 1	_ +	$\frac{4w_2}{2x_1}$	+	$5\mathbf{x_2}$ $2x_2$
$\frac{\eta}{\mathbf{w_1}}$	=	16 1 4	_ + _	$ \begin{array}{c} 4w_2\\ 2x_1\\ w_2 \end{array} $	+	$\frac{5\mathbf{x_2}}{2x_2}$

η	=	18.5	+	$\mathbf{w_2}$	_	$2.5w_{1}$
x_2	=	0.5	+	w_2	—	$0.5w_{1}$
x_1	=	4	—	w_2		
W_3	=	2.5	—	w_2	+	$0.5w_{1}$
η	=	21	_	w_3	—	$2w_1$
$\frac{\eta}{x_2}$	=	$\frac{21}{3}$	_	$\frac{w_3}{w_3}$	_	$2w_1$
$\frac{\eta}{x_2} \\ x_1$	=	21 3 1.5	_ _ +	$ \begin{array}{c} w_3\\ w_3\\ w_3 \end{array} $	_	$2w_1$ 0.5 w_1

Three iterations required.

Exercise 4.2

Largest coefficient rule:

$$\frac{\eta = + 2\mathbf{x}_1 + x_2}{\mathbf{w}_1 = 3 - 3x_1 - x_2}$$

$$\frac{\eta = 2 - (2/3)w_1 + (1/3)\mathbf{x}_2}{\mathbf{x}_1 = 1 - (1/3)w_1 - (1/3)x_2}$$

$$\frac{\eta = 3 - w_1 - x_1}{x_2 = 3 - w_1 - 3x_1}$$

Two iterations required. The same for the smallest index rule.

Exercise 4.4

The Klee-Minty cube for n = 3 was solved in the notes: 'Lecture 4'.

Exercise 4.6

Consider the dictionary

$$\eta = -\sum_{j=1}^{n} \epsilon_j 10^{n-j} \left(\frac{1}{2}b_j - x_j\right)$$
$$w_i = \sum_{j=1}^{i-1} \epsilon_i \epsilon_j 10^{i-j} (b_j - 2x_j) + (b_i - x_i), \quad i = 1, \dots, n,$$

where ϵ_i is ± 1 , $i = 1, \ldots, n$, and

$$1 = b_1 \ll b_2 \ll b_3 \ll \cdots \ll b_n.$$

Suppose that we choose k and put x_k into the basis and remove w_k . Then we need to compute the new dictionary. From the equation for w_k we get

$$x_k = \sum_{j=1}^{k-1} \epsilon_k \epsilon_j 10^{k-j} (b_j - 2x_j) + (b_k - w_k).$$

We then substitute this into the other rows of the dictionary. For $i = 1, \ldots, k - 1$, there is no change to w_i . For $i = k + 1, \ldots, n$, we find

$$w_{i} = \sum_{\substack{j=1\\j\neq k}}^{i-1} \epsilon_{i}\epsilon_{j}10^{i-j}(b_{j} - 2x_{j}) + (b_{i} - x_{i}) + \epsilon_{i}\epsilon_{k}10^{i-k}(b_{k} - 2x_{k})$$

$$= \sum_{\substack{j=1\\j\neq k}}^{i-1} \epsilon_{i}\epsilon_{j}10^{i-j}(b_{j} - 2x_{j}) + (b_{i} - x_{i})$$

$$+ \epsilon_{i}\epsilon_{k}10^{i-k} \left(b_{k} - 2\sum_{j=1}^{k-1} \epsilon_{k}\epsilon_{j}10^{k-j}(b_{j} - 2x_{j}) - 2(b_{k} - w_{k}) \right)$$

$$= -\sum_{j=1}^{k-1} \epsilon_{i}\epsilon_{j}10^{i-j}(b_{j} - 2x_{j}) - \epsilon_{i}\epsilon_{k}10^{i-k}(b_{k} - 2w_{k})$$

$$+ \sum_{j=k+1}^{i-1} \epsilon_{i}\epsilon_{j}10^{i-j}(b_{j} - 2x_{j}) + (b_{i} - x_{i}),$$

where we used the fact that $1 - 2\epsilon_k^2 = -1$. Similarly, for η :

$$\begin{split} \eta &= -\sum_{\substack{j=1\\j\neq k}}^{n} \epsilon_j 10^{n-j} \left(\frac{1}{2}b_j - x_j\right) - \epsilon_k 10^{n-k} \left(\frac{1}{2}b_k - x_k\right) \\ &= -\sum_{\substack{j=1\\j\neq k}}^{n} \epsilon_j 10^{n-j} \left(\frac{1}{2}b_j - x_j\right) \\ &- \epsilon_k 10^{n-k} \left(\frac{1}{2}b_k - \sum_{j=1}^{k-1} \epsilon_k \epsilon_j 10^{k-j} (b_j - 2x_j) - (b_k - w_k)\right) \\ &= \sum_{j=1}^{k-1} \epsilon_j 10^{n-j} \left(\frac{1}{2}b_j - x_j\right) + \epsilon_k 10^{n-k} \left(\frac{1}{2}b_k - w_k\right) \\ &- \sum_{j=k+1}^{n} \epsilon_j 10^{n-j} \left(\frac{1}{2}b_j - x_j\right). \end{split}$$

If we now define

$$(\epsilon_1^*,\ldots,\epsilon_n^*)=(-\epsilon_1,\ldots,-\epsilon_k,\epsilon_{k+1},\ldots,\epsilon_n),$$

and

$$\begin{aligned} x_k^* &= w_k, \quad w_k^* = x_k, \\ x_i^* &= x_i, \quad w_i^* = w_i, \quad i \neq k, \end{aligned}$$

the new dictionary can be written as

$$\eta = -\sum_{j=1}^{n} \epsilon_{j}^{*} 10^{n-j} \left(\frac{1}{2}b_{j} - x_{j}^{*}\right)$$
$$w_{i}^{*} = \sum_{j=1}^{i-1} \epsilon_{i}^{*} \epsilon_{j}^{*} 10^{i-j} (b_{j} - 2x_{j}^{*}) + (b_{i} - x_{i}^{*}), \quad i = 1, \dots, n,$$

which is the same as the old one except that ϵ_i , x_i , and w_i have been replaced by ϵ_i^* , x_i^* , and w_i^* .

Exercise 4.7

Recall from the lecture notes that the modified Klee-Minty problem is

maximize
$$\sum_{j=1}^{n} 10^{n-j} x_j - (1/2) \sum_{j=1}^{i-1} 10^{n-j} b_j$$

subject to
$$2\sum_{j=1}^{i-1} 10^{i-j} x_j + x_i \leq \sum_{j=1}^{i-1} 10^{i-j} b_i, \quad i \leq n,$$
$$x_j \geq 0, \quad j \leq n,$$

and

$$1 = b_1 \ll b_2 \ll b_3 \ll \cdots \ll b_n.$$

So the initial dictionary is

$$\eta = -\sum_{j=1}^{n} 10^{n-j} \left(\frac{1}{2}b_j - x_j\right)$$
$$w_i = \sum_{j=1}^{i-1} 10^{i-j}(b_j - 2x_j) + (b_j - x_j).$$

Now, for each of the 2^n choices of $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$ where $\epsilon_i = \pm 1$ for each $i = 1, \ldots, n$, let D_{ϵ} be the dictionary

$$\eta = -\sum_{j=1}^{n} \epsilon_j 10^{n-j} \left(\frac{1}{2}b_j - \overline{x}_j\right)$$
$$\overline{w}_i = \sum_{j=1}^{i-1} \epsilon_i \epsilon_j 10^{i-j} (b_j - 2\overline{x}_j) + (b_i - \overline{x}_i), \quad i = 1, \dots, n,$$

where, for each $i = 1, \ldots, n$,

$$(\overline{x}_i, \overline{w}_i) = \begin{cases} (x_i, w_i) & \text{if } \epsilon_i \epsilon_{i+1} = 1; \\ (w_i, x_i) & \text{if } \epsilon_i \epsilon_{i+1} = -1, \end{cases}$$
(1)

and we have defined $\epsilon_{n+1} := 1$.

To show that the simplex method takes $2^n - 1$ iterations using the largest coefficient rule, we will show the the method passes through every dictionary

of the form D_{ϵ} . To prove this, observe that the initial dictionary is $D_{(1,1,\ldots,1)}$. Next suppose that D_{ϵ} is the current dictionary. Looking at η , by the largest coefficient rule, we choose \overline{x}_k to enter the basis, where k is the smallest index in $\{1, \ldots, n\}$ such that $\epsilon_k = 1$. Then, \overline{w}_k leaves the basis, and by the calculation in Exercise 4.6, and using (1), the new dictionary is D_{ϵ^*} , where

$$(\epsilon_1^*, \dots, \epsilon_n^*) = (-\epsilon_1, \dots, -\epsilon_k, \epsilon_{k+1}, \dots, \epsilon_n).$$
(2)

If on the other hand $\epsilon = (-1, \ldots, -1)$, dictionary D_{ϵ} is optimal.

Thus it remains to show that every ϵ in the set

$$E_n = \{\epsilon = (\epsilon_1, \dots, \epsilon_n) : \epsilon_i = \pm 1, i = 1, \dots, n\}$$

is visited precisely once, starting with $\epsilon = (1, \ldots, 1)$ and ending with $\epsilon = (-1, \ldots, -1)$. This is clearly true in the case n = 1 since we pass from $\epsilon = (1)$ to $\epsilon = (-1)$ in one iteration. By induction on n, let us suppose that this property holds with n replaced by n - 1. Then we can assume that we iterate from $\epsilon = (1, \ldots, 1, 1)$ to $(-1, \ldots, -1, 1)$ in $2^{n-1} - 1$ steps, passing through every ϵ of the form $\epsilon = (\delta, 1)$ for $\delta \in E_{n-1}$. The next step takes us to $(1, \ldots, 1, -1)$. And, then, again by the induction hypothesis, we iterate from $(1, \ldots, 1, -1)$ to $(-1, \ldots, -1, -1)$ passing through every ϵ of the form $\epsilon = (\delta, -1)$ for $\delta \in E_{n-1}$. Thus this property does indeed hold for all n.

Note also that in the first dictionary, $D_{(1,\ldots,1)}$, we have

$$x_1 = \dots = x_n = 0,$$

and in the last dictionary, $D_{(-1,\dots,-1)}$, we have

$$x_1 = \dots = x_{n-1} = 0, \quad x_n \neq 0.$$

If we simplify the feasible region to the unit cube, the case n = 3 is as follows:

ϵ	$x = (x_1, x_2, x_3)$
(1, 1, 1)	(0, 0, 0)
(-1, 1, 1)	(1, 0, 0)
(1, -1, 1)	(1,1,0)
(-1, -1, 1)	(0,1,0)
(1, 1, -1)	(0,1,1)
(-1, 1, -1)	(1,1,1)
(1, -1, -1)	(1,0,1)
(-1, -1, -1)	(0,0,1)