Answers to Exercises, Week 5, MAT3100, V20

Michael Floater

Exercises in Week 5 are: Ex. 4.1, 4.2, 4.4, 4.6, 4.7.

Exercise 4.1

Largest coefficient rule:

$$
\begin{aligned}
& \begin{aligned}
\eta & =+4 x_{1}+5 \mathbf{x}_{\mathbf{2}} \\
\hline w_{1} & =9-2 x_{1}-2 x_{2}
\end{aligned} \\
& w_{2}=4-x_{1} \\
& \mathbf{w}_{\mathbf{3}}=3 \quad-x_{2} \\
& \begin{array}{r}
\eta=15+4 \mathbf{x}_{1}-5 w_{3} \\
\hline \mathbf{w}_{\mathbf{1}}=3-2 x_{1}+2 w_{3}
\end{array} \\
& w_{2}=4-x_{1} \\
& \begin{array}{c}
x_{2}=3
\end{array}-w_{3} \\
& \begin{aligned}
\eta & =21
\end{aligned} \quad 2 w_{1}-w_{3} . \\
& w_{2}=2.5+0.5 w_{1}-w_{3} \\
& x_{2}=3-w_{3}
\end{aligned}
$$

Two iterations required.
Smallest index rule:

$$
\begin{array}{rllll}
\eta & = & + & 4 \mathbf{x}_{\mathbf{1}} & + \\
5 x_{2} \\
\hline w_{1} & =9 & - & 2 x_{1} & - \\
\mathbf{w}_{\mathbf{2}} & =4 & - & x_{2} \\
w_{3} & =3 & & & \\
\eta & =16 & - & x_{2} \\
\eta & & & \\
\mathbf{w}_{\mathbf{1}} & = & + & 2 x_{1} & - \\
x_{1} & = & 2 x_{2} \\
x_{2} & = & - & w_{2} & \\
\hline
\end{array}
$$

$$
\begin{array}{rlrl}
\eta & =18.5 & +\mathbf{w}_{\mathbf{2}}-2.5 w_{1} \\
\hline x_{2} & =0.5 & +w_{2}-0.5 w_{1} \\
x_{1} & =4-w_{2} \\
\mathbf{w}_{\mathbf{3}} & =2.5-w_{2}+0.5 w_{1} \\
\eta & = & 21-w_{3}-2 w_{1} \\
\hline x_{2} & = & 3 & w_{3} \\
x_{1} & =1.5-w_{3}-0.5 w_{1} \\
w_{2} & =2.5-w_{3}+0.5 w_{1}
\end{array}
$$

Three iterations required.

Exercise 4.2

Largest coefficient rule:

$$
\begin{aligned}
& \begin{aligned}
& \eta= \\
& \mathbf{w}_{\mathbf{1}}=3-2 \mathbf{x}_{\mathbf{1}}+3 x_{2} \\
& \hline
\end{aligned} \\
& \begin{array}{r}
\eta=2-(2 / 3) w_{1}+(1 / 3) \mathbf{x}_{\mathbf{2}} \\
\hline \mathbf{x}_{\mathbf{1}}=1-(1 / 3) w_{1}-(1 / 3) x_{2}
\end{array} \\
& \begin{array}{r}
\eta=3-w_{1}-x_{1} \\
\hline x_{2}=3-w_{1}-3 x_{1}
\end{array}
\end{aligned}
$$

Two iterations required. The same for the smallest index rule.

Exercise 4.4

The Klee-Minty cube for $n=3$ was solved in the notes: 'Lecture 4'.

Exercise 4.6

Consider the dictionary

$$
\begin{aligned}
\eta & =-\sum_{j=1}^{n} \epsilon_{j} 10^{n-j}\left(\frac{1}{2} b_{j}-x_{j}\right) \\
w_{i} & =\sum_{j=1}^{i-1} \epsilon_{i} \epsilon_{j} 10^{i-j}\left(b_{j}-2 x_{j}\right)+\left(b_{i}-x_{i}\right), \quad i=1, \ldots, n,
\end{aligned}
$$

where ϵ_{i} is $\pm 1, i=1, \ldots, n$, and

$$
1=b_{1} \ll b_{2} \ll b_{3} \ll \cdots \ll b_{n}
$$

Suppose that we choose k and put x_{k} into the basis and remove w_{k}. Then we need to compute the new dictionary. From the equation for w_{k} we get

$$
x_{k}=\sum_{j=1}^{k-1} \epsilon_{k} \epsilon_{j} 10^{k-j}\left(b_{j}-2 x_{j}\right)+\left(b_{k}-w_{k}\right) .
$$

We then substitute this into the other rows of the dictionary. For $i=$ $1, \ldots, k-1$, there is no change to w_{i}. For $i=k+1, \ldots, n$, we find

$$
\begin{aligned}
w_{i}= & \sum_{\substack{j=1 \\
j \neq k}}^{i-1} \epsilon_{i} \epsilon_{j} 10^{i-j}\left(b_{j}-2 x_{j}\right)+\left(b_{i}-x_{i}\right)+\epsilon_{i} \epsilon_{k} 10^{i-k}\left(b_{k}-2 x_{k}\right) \\
= & \sum_{\substack{j=1 \\
j \neq k}}^{i-1} \epsilon_{i} \epsilon_{j} 10^{i-j}\left(b_{j}-2 x_{j}\right)+\left(b_{i}-x_{i}\right) \\
& +\epsilon_{i} \epsilon_{k} 10^{i-k}\left(b_{k}-2 \sum_{j=1}^{k-1} \epsilon_{k} \epsilon_{j} 10^{k-j}\left(b_{j}-2 x_{j}\right)-2\left(b_{k}-w_{k}\right)\right) \\
= & -\sum_{j=1}^{k-1} \epsilon_{i} \epsilon_{j} 10^{i-j}\left(b_{j}-2 x_{j}\right)-\epsilon_{i} \epsilon_{k} 10^{i-k}\left(b_{k}-2 w_{k}\right) \\
& +\sum_{j=k+1}^{i-1} \epsilon_{i} \epsilon_{j} 10^{i-j}\left(b_{j}-2 x_{j}\right)+\left(b_{i}-x_{i}\right)
\end{aligned}
$$

where we used the fact that $1-2 \epsilon_{k}^{2}=-1$. Similarly, for η :

$$
\begin{aligned}
\eta= & -\sum_{\substack{j=1 \\
j \neq k}}^{n} \epsilon_{j} 10^{n-j}\left(\frac{1}{2} b_{j}-x_{j}\right)-\epsilon_{k} 10^{n-k}\left(\frac{1}{2} b_{k}-x_{k}\right) \\
= & -\sum_{\substack{j=1 \\
j \neq k}}^{n} \epsilon_{j} 10^{n-j}\left(\frac{1}{2} b_{j}-x_{j}\right) \\
& -\epsilon_{k} 10^{n-k}\left(\frac{1}{2} b_{k}-\sum_{j=1}^{k-1} \epsilon_{k} \epsilon_{j} 10^{k-j}\left(b_{j}-2 x_{j}\right)-\left(b_{k}-w_{k}\right)\right) \\
= & \sum_{j=1}^{k-1} \epsilon_{j} 10^{n-j}\left(\frac{1}{2} b_{j}-x_{j}\right)+\epsilon_{k} 10^{n-k}\left(\frac{1}{2} b_{k}-w_{k}\right) \\
& -\sum_{j=k+1}^{n} \epsilon_{j} 10^{n-j}\left(\frac{1}{2} b_{j}-x_{j}\right) .
\end{aligned}
$$

If we now define

$$
\left(\epsilon_{1}^{*}, \ldots, \epsilon_{n}^{*}\right)=\left(-\epsilon_{1}, \ldots,-\epsilon_{k}, \epsilon_{k+1}, \ldots, \epsilon_{n}\right),
$$

and

$$
\begin{aligned}
& x_{k}^{*}=w_{k}, \quad w_{k}^{*}=x_{k}, \\
& x_{i}^{*}=x_{i}, \quad w_{i}^{*}=w_{i}, \quad i \neq k,
\end{aligned}
$$

the new dictionary can be written as

$$
\begin{aligned}
\eta & =-\sum_{j=1}^{n} \epsilon_{j}^{*} 10^{n-j}\left(\frac{1}{2} b_{j}-x_{j}^{*}\right) \\
w_{i}^{*} & =\sum_{j=1}^{i-1} \epsilon_{i}^{*} \epsilon_{j}^{*} 10^{i-j}\left(b_{j}-2 x_{j}^{*}\right)+\left(b_{i}-x_{i}^{*}\right), \quad i=1, \ldots, n,
\end{aligned}
$$

which is the same as the old one except that ϵ_{i}, x_{i}, and w_{i} have been replaced by $\epsilon_{i}^{*}, x_{i}^{*}$, and w_{i}^{*}.

Exercise 4.7

Recall from the lecture notes that the modified Klee-Minty problem is

$$
\operatorname{maximize} \quad \sum_{j=1}^{n} 10^{n-j} x_{j}-(1 / 2) \sum_{j=1}^{i-1} 10^{n-j} b_{j}
$$

$$
\begin{array}{lll}
\text { subject to } \quad 2 \sum_{j=1}^{i-1} 10^{i-j} x_{j}+x_{i} & \leq \sum_{j=1}^{i-1} 10^{i-j} b_{i}, & i \leq n, \\
x_{j} & \geq 0, & j \leq n
\end{array}
$$

and

$$
1=b_{1} \ll b_{2} \ll b_{3} \ll \cdots \ll b_{n} .
$$

So the initial dictionary is

$$
\begin{aligned}
\eta & =-\sum_{j=1}^{n} 10^{n-j}\left(\frac{1}{2} b_{j}-x_{j}\right) \\
w_{i} & =\sum_{j=1}^{i-1} 10^{i-j}\left(b_{j}-2 x_{j}\right)+\left(b_{j}-x_{j}\right) .
\end{aligned}
$$

Now, for each of the 2^{n} choices of $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ where $\epsilon_{i}= \pm 1$ for each $i=1, \ldots, n$, let D_{ϵ} be the dictionary

$$
\begin{aligned}
\eta & =-\sum_{j=1}^{n} \epsilon_{j} 10^{n-j}\left(\frac{1}{2} b_{j}-\bar{x}_{j}\right) \\
\bar{w}_{i} & =\sum_{j=1}^{i-1} \epsilon_{i} \epsilon_{j} 10^{i-j}\left(b_{j}-2 \bar{x}_{j}\right)+\left(b_{i}-\bar{x}_{i}\right), \quad i=1, \ldots, n,
\end{aligned}
$$

where, for each $i=1, \ldots, n$,

$$
\left(\bar{x}_{i}, \bar{w}_{i}\right)= \begin{cases}\left(x_{i}, w_{i}\right) & \text { if } \epsilon_{i} \epsilon_{i+1}=1 ; \tag{1}\\ \left(w_{i}, x_{i}\right) & \text { if } \epsilon_{i} \epsilon_{i+1}=-1,\end{cases}
$$

and we have defined $\epsilon_{n+1}:=1$.
To show that the simplex method takes $2^{n}-1$ iterations using the largest coefficient rule, we will show the the method passes through every dictionary
of the form D_{ϵ}. To prove this, observe that the initial dictionary is $D_{(1,1, \ldots, 1)}$. Next suppose that D_{ϵ} is the current dictionary. Looking at η, by the largest coefficient rule, we choose \bar{x}_{k} to enter the basis, where k is the smallest index in $\{1, \ldots, n\}$ such that $\epsilon_{k}=1$. Then, \bar{w}_{k} leaves the basis, and by the calculation in Exercise 4.6, and using (1), the new dictionary is $D_{\epsilon^{*}}$, where

$$
\begin{equation*}
\left(\epsilon_{1}^{*}, \ldots, \epsilon_{n}^{*}\right)=\left(-\epsilon_{1}, \ldots,-\epsilon_{k}, \epsilon_{k+1}, \ldots, \epsilon_{n}\right) . \tag{2}
\end{equation*}
$$

If on the other hand $\epsilon=(-1, \ldots,-1)$, dictionary D_{ϵ} is optimal.
Thus it remains to show that every ϵ in the set

$$
E_{n}=\left\{\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right): \epsilon_{i}= \pm 1, i=1, \ldots, n\right\}
$$

is visited precisely once, starting with $\epsilon=(1, \ldots, 1)$ and ending with $\epsilon=$ $(-1, \ldots,-1)$. This is clearly true in the case $n=1$ since we pass from $\epsilon=(1)$ to $\epsilon=(-1)$ in one iteration. By induction on n, let us suppose that this property holds with n replaced by $n-1$. Then we can assume that we iterate from $\epsilon=(1, \ldots, 1,1)$ to $(-1, \ldots,-1,1)$ in $2^{n-1}-1$ steps, passing through every ϵ of the form $\epsilon=(\delta, 1)$ for $\delta \in E_{n-1}$. The next step takes us to $(1, \ldots, 1,-1)$. And, then, again by the induction hypothesis, we iterate from $(1, \ldots, 1,-1)$ to $(-1, \ldots,-1,-1)$ passing through every ϵ of the form $\epsilon=(\delta,-1)$ for $\delta \in E_{n-1}$. Thus this property does indeed hold for all n.

Note also that in the first dictionary, $D_{(1, \ldots, 1)}$, we have

$$
x_{1}=\cdots=x_{n}=0,
$$

and in the last dictionary, $D_{(-1, \ldots,-1)}$, we have

$$
x_{1}=\cdots=x_{n-1}=0, \quad x_{n} \neq 0
$$

If we simplify the feasible region to the unit cube, the case $n=3$ is as follows:

ϵ	$x=\left(x_{1}, x_{2}, x_{3}\right)$
$(1,1,1)$	$(0,0,0)$
$(-1,1,1)$	$(1,0,0)$
$(1,-1,1)$	$(1,1,0)$
$(-1,-1,1)$	$(0,1,0)$
$(1,1,-1)$	$(0,1,1)$
$(-1,1,-1)$	$(1,1,1)$
$(1,-1,-1)$	$(1,0,1)$
$(-1,-1,-1)$	$(0,0,1)$

