# Answers to Exercises, Week 6, MAT3100, V20 

Michael Floater

Exercises in Week 6 are: 5.1, 5.4, 5.5, 5.7 of Vanderbei.

## Exercise 5.1

First we convert the problem to standard form. $x_{1}$ is a free variable and so we replace it by the difference $x_{0}-x_{1}$ where $x_{0}, x_{1} \geq 0$. Similarly, $x_{4}$ is a free variable and so we replace it by the difference $x_{4}-x_{5}$ where $x_{4}, x_{5} \geq 0$. Then we obtain

$$
\begin{aligned}
& \text { maximize } \quad x_{0}-x_{1}-2 x_{2} \\
& \text { subject to } \quad x_{0}-x_{1}+2 x_{2}-x_{3}+x_{4}-x_{5} \geq 0 \text {, } \\
& 4 x_{0}-4 x_{1}+3 x_{2}+4 x_{3}-2 x_{4}+2 x_{5} \leq 3 \text {, } \\
& -x_{0}+x_{1}-x_{2}+2 x_{3}+x_{4}-x_{5}=1, \\
& x_{0}, \ldots, x_{5} \geq 0 .
\end{aligned}
$$

Then we invert the $\geq$ inequality and replace the equality by $\leq$ and $\geq$ and we get

$$
\begin{array}{rrl}
\operatorname{maximize} & x_{0}-x_{1}-2 x_{2} & \\
\text { subject to } & -x_{0}+x_{1}-2 x_{2}+x_{3}-x_{4}+x_{5} & \leq 0, \\
& 4 x_{0}-4 x_{1}+3 x_{2}+4 x_{3}-2 x_{4}+2 x_{5} & \leq 3, \\
& -x_{0}+x_{1}-x_{2}+2 x_{3}+x_{4}-x_{5} & \leq 1, \\
& x_{0}-x_{1}+x_{2}-2 x_{3}-x_{4}+x_{5} & \leq-1, \\
x_{0}, \ldots, x_{5} & \geq 0 .
\end{array}
$$

Then the dual problem is

$$
\begin{aligned}
3 y_{1}+y_{2}-y_{3} & \\
\text { minimize } & \geq 1, \\
\text { subject to } & y_{0}+4 y_{1}-y_{2}+y_{3} \\
y_{0}-4 y_{1}+y_{2}-y_{3} & \geq-1, \\
-2 y_{0}+3 y_{1}-y_{2}+y_{3} & \geq-2, \\
y_{0}+4 y_{1}+2 y_{2}-2 y_{3} & \geq 0, \\
-y_{0}-2 y_{1}+y_{2}-y_{3} & \geq 0, \\
y_{0}+2 y_{1}-y_{2}+y_{3} & \geq 0, \\
y_{0}, \ldots, y_{3} & \geq 0 .
\end{aligned}
$$

## Exercise 5.4

The LP problem is

$$
\begin{array}{rll}
\operatorname{maximize} & 2 x_{1}+x_{2} & \\
\text { subject to } & 2 x_{1}+x_{2} & \leq 4, \\
2 x_{1}+3 x_{2} & \leq 3 \\
4 x_{1}+x_{2} & \leq 5 \\
& x_{1}+5 x_{2} & \leq 1, \\
& x_{1}, x_{2} & \geq 0 .
\end{array}
$$

The dual problem is

$$
\begin{array}{rr}
\operatorname{minimize} & 4 y_{1}+3 y_{1}+5 y_{4}+y_{4} \\
\text { subject to } & 2 y_{1}+2 y_{2}+4 y_{3}+y_{4} \geq 2 \\
& y_{1}+3 y_{2}+y_{3}+5 y_{4} \geq 1 \\
y_{1}, y_{2}, y_{3}, y_{4} & \geq 0
\end{array}
$$

We introduce slack variables for both problems. The two initial dictionaries are:

$$
\begin{array}{rlrl}
\eta & = & 2 x_{1} & + \\
x_{2} \\
\hline w_{1} & =4-2 x_{1} & - & x_{2} \\
w_{2} & =3-2 x_{1}-3 x_{2} \\
w_{3} & =5-4 x_{1}-x_{2} \\
w_{4} & =1-2 & -5 x_{2}
\end{array}
$$

and

$$
\begin{array}{rlllllllrlr}
-\zeta & = & & - & 4 y_{1} & - & 3 y_{2} & - & 5 y_{3} & - & y_{4} \\
\hline z_{1} & = & -2 & + & 2 y_{1} & + & 2 y_{2} & + & 4 y_{3} & + & y_{4} \\
z_{2} & = & -1 & + & y_{1} & + & 3 y_{2} & + & y_{3} & + & 5 y_{4}
\end{array}
$$

The primal dictionary is feasible, the dual not. We pivot on the primal dictionary. $x_{1}$ enters and $w_{4}$ leaves (as in Exercise 2.2). The new dictionary is:

$$
\begin{array}{rllll}
\eta & = & 2 & - & 2 w_{4}
\end{array}-9 x_{2} .
$$

Then we apply the corresponding pivot to the dual dictionary: i.e., $z_{1}$ leaves and $y_{4}$ enters. The new dictionary is:

| $-\zeta$ | $=$ | -2 | $-2 y_{1}$ | - | $y_{2}$ | - | $y_{3}$ | - |
| ---: | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $z_{1}$ |  |  |  |  |  |  |  |  |
| $y_{4}$ | $=$ | 2 | $-2 y_{1}$ | $-2 y_{2}$ | - | $4 y_{3}$ | + | $z_{1}$ |
| $z_{2}$ | $=$ | 9 | - | $y_{1}$ | $-7 y_{2}$ | - | $19 y_{3}$ | + |
| $5 z_{1}$ |  |  |  |  |  |  |  |  |

The primal dictionary is now optimal. and the dual dictionary is feasible. We also see that both objective functions have the same value. Thus, this illustrates the Strong Duality Theorem.

## Exercise 5.5

(a) The dual problem is

$$
\begin{array}{rll}
\operatorname{minimize} & 6 y_{1}+1.5 y_{2}+4 y_{3} & \\
\text { subject to } & 2 y_{1}-2 y_{2}+3 y_{3} & \geq 2 \\
3 y_{1}+4 y_{2}+2 y_{3} & \geq 8 \\
3 y_{2}-2 y_{3} & \geq-1 \\
6 y_{1}-4 y_{3} & \geq-2 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{array}
$$

(b) The basic variables are $x_{1}, w_{2}, x_{3}$. The non-basic ones are $w_{1}, x_{2}, w_{3}, x_{4}$.
(c) The primal solution (basic solution in the primal problem) is $x_{1}=3.0$, $w_{2}=0.0, x_{3}=2.5$. It is feasible because all these basic variables have non-negative values. It is degenerate because $w_{2}=0$.
(d) We use the negative transpose property: the corresponding dual dictionary is

$$
\begin{aligned}
& \begin{array}{rrrrrrr}
-\zeta & = & -3.5 & -3.0 z_{1} & + & 0 y_{2} & -2.5 z_{3} \\
\hline y_{1} & = & 0.25 & +0.5 z_{1} & -1.25 y_{2} & +0.75 z_{3}
\end{array} \\
& z_{2}=-6.25+1.5 z_{1}+3.25 y_{2}+1.25 z_{3} \\
& y_{3}=0.5+0 z_{1}+1.5 y_{2}-0.5 z_{3} \\
& z_{4}=1.5+3.0 z_{1}-13.5 y_{2}+6.5 z_{3}
\end{aligned}
$$

(e) The dual solution is $y_{1}=0.25, z_{2}=-6.25, y_{3}=0.5, z_{4}=1.5$, and $z_{1}=y_{2}=z_{3}=0$. It is not feasible because $z_{2}$ is negative.
(f) Yes, the solutions satisfy the complementary slack conditions:

$$
x_{i} z_{i}=0, \quad i=1, \ldots, 4, \quad y_{i} w_{i}=0, \quad i=1, \ldots, 3 .
$$

Note $y_{2}$ and $w_{2}$ are both zero.
(g) No, the current primal solution is not optimal because $x_{2}$ has a positive coefficient, 6.25 , in the objective function.
(h) In the next primal pivot, $x_{2}$ will enter and $w_{2}$ will leave. This is a degenerate pivot because $w_{2}$ has the current value 0 . So the value of $\eta$ will not change.

## Exercise 5.7

The LP problem in Exercise 2.3 is

$$
\begin{array}{rrl}
\operatorname{maximize} & 2 x_{1}-6 x_{2} & \\
\text { subject to } & -x_{1}-x_{2}-x_{3} & \leq-2 \\
2 x_{1}-x_{2}+x_{3} & \leq 1 \\
& x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

The dual problem is

$$
\begin{aligned}
\operatorname{minimize} & -2 y_{1}+y_{2} \\
\text { subject to } & -y_{1}+2 y_{2} \\
-y_{1}-y_{2} & \geq-6, \\
-y_{1}+y_{2} & \geq 0, \\
y_{1}, y_{2} & \geq 0 .
\end{aligned}
$$

The initial primal dictionary is

$$
\begin{array}{rlrlrllll}
\eta & = & & 2 x_{1} & - & 6 x_{2} \\
\hline w_{1} & = & -2 & + & x_{1} & + & x_{2} & + & x_{3} \\
w_{2} & = & 1 & - & 2 x_{1} & + & x_{2} & - & x_{3}
\end{array}
$$

and the initial dual dictionary is

$$
\begin{array}{rlrlrlr}
-\zeta & = & & 2 y_{1} & - & y_{2} \\
\hline z_{1} & = & -2 & - & y_{1} & + & 2 y_{2} \\
z_{2} & = & 6 & - & y_{1} & - & y_{2} \\
z_{3} & = & 0 & - & y_{1} & + & y_{2}
\end{array}
$$

Both dictionaries are non-feasible. We can use the dual-primal two-phase algorithm to solve this. In Phase I we find a feasible solution to the primal problem. We do this by replacing the objective function by $\eta=-x_{1}-x_{2}-x_{3}$. This has the effect of making the dual problem feasible. We then solve the dual problem, and use the result as a feasible solution to the primal problem. With $\eta=-x_{1}-x_{2}-x_{3}$, the dual dictionary is now

| $-\zeta$ | $=$ |  | $2 y_{1}$ | - | $y_{2}$ |
| ---: | :--- | :--- | :--- | :--- | :--- |
| $z_{1}$ | $=$ | 1 | - | $y_{1}$ | + |
| $z_{2}$ | $=$ | $2 y_{2}$ |  |  |  |
| $z_{3}$ | $=$ | - | $y_{1}$ | - | $y_{2}$ |
|  | $y_{1}$ | + | $y_{2}$ |  |  |

which is feasible. Then $y_{1}$ enters and there is a tie for the leaving variable among $z_{1}, z_{2}, z_{3}$. Let's choose $z_{2}$ to leave because then the coefficient of $y_{2}$ will become negative. We get

$$
\begin{array}{rlrrrr}
-\zeta & = & 2 & - & 2 z_{2} & - \\
\hline z_{1} & = & 0 & + & z_{2} & + \\
y_{1} & = & - & z_{2} & - & y_{2} \\
z_{3} & = & + & z_{2} & + & 2 y_{2}
\end{array}
$$

This dictionary is optimal. The corresponding primal dictionary is

$$
\begin{array}{rrrrrrrrr}
\eta & = & -2 & + & 0 x_{1} & - & w_{1} & + & 0 x_{3} \\
\hline x_{2} & = & 2 & - & x_{1} & + & w_{1} & - & x_{3} \\
w_{2} & = & 3 & - & 3 x_{1} & + & w_{1} & - & 2 x_{3}
\end{array}
$$

This gives us the feasible solution $x_{1}=x_{3}=0, x_{2}=2$. We can check that this is indeed feasible. We now express the original objective function in terms of the current non-basic variables:

$$
\begin{aligned}
\eta & =2 x_{1}-6 x_{2} \\
& =2 x_{1}-6\left(2-x_{1}+w_{1}-x_{3}\right) \\
& =-12+8 x_{1}-6 w_{1}+6 x_{3} .
\end{aligned}
$$

So we can start with the feasible dictionary

$$
\begin{array}{rrrrrrrr}
\eta & = & -12 & + & 8 x_{1} & - & 6 w_{1} & + \\
\hline x_{3} \\
\hline x_{2} & = & 2 & - & x_{1} & + & w_{1} & - \\
w_{2} & = & 3 & - & 3 x_{1} & + & w_{1} & - \\
2 x_{3}
\end{array}
$$

This is exactly the same dictionary we had at the start of Phase II when we solved Exercise 2.3 (In Week 3). After two pivots we obtain the solution $x_{1}=0, x_{2}=1 / 2, x_{3}=3 / 2$ with $\eta=-3$. We also have $w_{1}=w_{2}=0$.

