Answers to Exercises, Week 8, MAT3100, V20

Michael Floater

Exercises in Week 8 are: 17.1, 17.2, 17.3, 17.4 of Vanderbei.

Exercise 17.1

The given problem is

$$
\begin{aligned}
\operatorname{maximize} & -x_{1}+x_{2} & & \\
\text { subject to } & & x_{2} & \leq 1, \\
& -x_{1} & & \leq-1, \\
& & x_{1}, x_{2} & \geq 0 .
\end{aligned}
$$

The optimal solution is clearly $\left(x_{1}, x_{2}\right)=(1,1)$. The dual problem is

$$
\begin{array}{rcrl}
\operatorname{minimize} & y_{1}-y_{2} & & \\
\text { subject to } & & -y_{2} & \geq-1, \\
& y_{1} & & \geq 1, \\
& & y_{1}, y_{2} & \geq 0 .
\end{array}
$$

We can rewrite this as

$$
\begin{array}{rcrl}
\operatorname{maximize} & -y_{1}+y_{2} & & \\
\text { subject to } & & y_{2} & \leq 1, \\
& -y_{1} & & \leq-1, \\
& y_{1}, y_{2} & \geq 0,
\end{array}
$$

and so we see that (D) equals (P).
The central path is the solution, for each $\mu>0$, to the $2 m+2 n$ equations

$$
\begin{aligned}
& A x+w=b, \\
& A^{T} y-z=c, \\
& x_{j} z_{j}=\mu, \\
& w_{i} y_{i}=\mu, \\
& \text { all } j, \\
& \text { all } i .
\end{aligned}
$$

Since (P) and (D) are the same we have $y_{i}=x_{i}$ and $z_{i}=w_{i}$ for all i, and therefore it is sufficient to solve

$$
\begin{aligned}
A x+w & =b, \\
x_{j} w_{j} & =\mu, \quad \text { all } j .
\end{aligned}
$$

We have

$$
c=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \quad A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad b=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

and so the equations become

$$
\begin{aligned}
x_{2}+w_{1} & =1, \\
-x_{1}+w_{2} & =-1, \\
x_{1} w_{1}=x_{2} w_{2} & =\mu .
\end{aligned}
$$

Now we can eliminate w_{1} and w_{2} using the first two equations,

$$
w_{1}=1-x_{2}, \quad w_{2}=x_{1}-1
$$

to get

$$
x_{1}\left(1-x_{2}\right)=x_{2}\left(x_{1}-1\right)=\mu
$$

The first equation is the equation of a parabola. So the central path in the $\left(x_{1}, x_{2}\right)$ plane is a parabola. However, we want the path as a function of μ. To do this we can eliminate x_{2} using the second equation,

$$
x_{2}=\mu /\left(x_{1}-1\right)
$$

and substitute into the first:

$$
x_{1}\left(1-\mu /\left(x_{1}-1\right)\right)=\mu
$$

or

$$
x_{1}^{2}-(1+2 \mu) x_{1}+\mu=0
$$

The solution is

$$
x_{1}=\left(1+2 \mu \pm \sqrt{1+4 \mu^{2}}\right) / 2 .
$$

Since we must have $x_{1} \geq 1$ for a feasible solution, we must have

$$
x_{1}=\left(1+2 \mu+\sqrt{1+4 \mu^{2}}\right) / 2 .
$$

A similar calculation gives

$$
x_{2}=\left(1-2 \mu+\sqrt{1+4 \mu^{2}}\right) / 2 .
$$

We find that the path $p(\mu)=\left(x_{1}(\mu), x_{2}(\mu)\right)$ converges to $\left(x_{1}, x_{2}\right)=(1,1)$ as $\mu \rightarrow 0$, which we can easily see is the optimal solution.

Exercise 17.2

The given problem is

$$
\begin{array}{rrr}
\operatorname{maximize} & (\cos \theta) x_{1}+(\sin \theta) x_{2} & \\
\text { subject to } & x_{1} & \leq 1, \\
& x_{2} & \leq 1, \\
& x_{1}, x_{2} & \geq 0
\end{array}
$$

The optimal solution is clearly $\left(x_{1}, x_{2}\right)=(1,1)$. We have

$$
c=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right], \quad A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
1
\end{array}\right],
$$

and the central path equations are

$$
\begin{aligned}
x_{1}+w_{1} & =1, \\
x_{2}+w_{2} & =1, \\
y_{1}-z_{1} & =\cos \theta, \\
y_{2}-z_{2} & =\sin \theta, \\
x_{1} z_{1}=x_{2} z_{2}=w_{1} y_{1}=w_{2} y_{2} & =\mu .
\end{aligned}
$$

In this case there are four equations in the unknowns $x_{1}, w_{1}, y_{1}, z_{1}$, and there are four other equations in the remaining variables. Thus it is sufficient to solve the first four:

$$
\begin{aligned}
x_{1}+w_{1} & =1, \\
y_{1}-z_{1} & =\cos \theta, \\
x_{1} z_{1}=y_{1} w_{1} & =\mu .
\end{aligned}
$$

Using the last two, the first two become

$$
\begin{aligned}
x_{1}+w_{1} & =1, \\
\left(1 / w_{1}-1 / x_{1}\right) \mu & =\cos \theta
\end{aligned}
$$

Using the first to eliminate w_{1} we find

$$
\left(1 /\left(1-x_{1}\right)-1 / x_{1}\right) \mu=\cos \theta .
$$

Let $\lambda=\cos \theta / \mu$. Then

$$
\lambda x_{1}^{2}+(2-\lambda) x_{1}-1=0
$$

and so

$$
x_{1}=\left(\lambda-2+\sqrt{\lambda^{2}+4}\right) /(2 \lambda)
$$

(there is only one solution by the constraint that $x_{1} \geq 0$). We can rewrite this as

$$
x_{1}=\left(c-2 \mu+\sqrt{c^{2}+4 \mu^{2}}\right) /(2 c)
$$

where $c=\cos \theta$. A similar calculation gives

$$
x_{2}=\left(c-2 \mu+\sqrt{c^{2}+4 \mu^{2}}\right) /(2 c)
$$

where $c=\sin \theta$. We can immediately see that $\left(x_{1}, x_{2}\right) \rightarrow(1,1)$ as $\mu \rightarrow 0$. To get the limit as $\mu \rightarrow \infty$, we can rewrite x_{1} as

$$
\frac{2 \mu}{-c+2 \mu+\sqrt{c^{2}+4 \mu^{2}}}
$$

and then we see that $x_{1} \rightarrow 1 / 2$ as $\mu \rightarrow \infty$. Similarly, $x_{2} \rightarrow 1 / 2$ as $\mu \rightarrow \infty$.

Exercise 17.3

We form the more general barrier problem

$$
\begin{array}{ll}
\operatorname{maximize} & c^{T} x+\sum_{j} r_{j} \log x_{j}+\sum_{i} s_{i} \log w_{i} \\
\text { subject to } & A x+w=b
\end{array}
$$

for positive r_{j} and s_{i}. We now follow the same steps as in Chapter 17, using Lagrange multipliers and taking partial derivatives, and we end up with the four equations

$$
\begin{aligned}
A x+w & =b, \\
A^{T} y-z & =c, \\
x_{j} z_{j} & =r_{j}, \quad \text { all } j, \\
w_{i} y_{i} & =s_{i}, \quad \text { all } i .
\end{aligned}
$$

The proof of existence and uniqueness are similar to Chapter 17.

Exercise 17.4

The given problem is

$$
\begin{aligned}
\operatorname{maximize} & \sum_{j} c_{j} x_{j} \\
\text { subject to } & \sum_{j} a_{i j} x_{j}
\end{aligned}=b_{i},
$$

Since the constraints are equalities, we could consider trying to solve

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j} c_{j} \xi_{j}^{2} \\
\text { subject to } & \sum_{j} a_{i j} \xi_{j}^{2}=b_{i},
\end{array}
$$

with ξ_{1}, \ldots, ξ_{n} free variables. If $\xi^{*}=\left(\xi_{1}^{*}, \ldots, \xi_{n}^{*}\right)$ is an optimal solution to the auxiliarly problem then $x^{*}=\left(\xi_{1}^{2}, \ldots, \xi_{n}^{2}\right)$ solves the original problem (it doesn't matter about the signs of $\left.\xi_{1}^{*}, \ldots, \xi_{n}^{*}\right)$.

The advantage of the auxiliary problem is that there are no inequalities and we could apply Lagrange multipliers. However, the problem is non-linear and might not be easy to solve.

