
Answers to Exercises, Week 8, MAT3100, V20

Michael Floater

Exercises in Week 8 are: 17.1, 17.2, 17.3, 17.4 of Vanderbei.

Exercise 17.1

The given problem is

maximize −x1 + x2
subject to x2 ≤ 1,

−x1 ≤ −1,
x1, x2 ≥ 0.

The optimal solution is clearly (x1, x2) = (1, 1). The dual problem is

minimize y1 − y2
subject to −y2 ≥ −1,

y1 ≥ 1,
y1, y2 ≥ 0.

We can rewrite this as

maximize −y1 + y2
subject to y2 ≤ 1,

−y1 ≤ −1,
y1, y2 ≥ 0,

and so we see that (D) equals (P).
The central path is the solution, for each µ > 0, to the 2m+2n equations

Ax+ w = b,

ATy − z = c,

xjzj = µ, all j,

wiyi = µ, all i.
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Since (P) and (D) are the same we have yi = xi and zi = wi for all i, and
therefore it is sufficient to solve

Ax+ w = b,

xjwj = µ, all j.

We have

c =

[
−1
1

]
, A =

[
0 1
−1 0

]
, b =

[
1
−1

]
,

and so the equations become

x2 + w1 = 1,

−x1 + w2 = −1,

x1w1 = x2w2 = µ.

Now we can eliminate w1 and w2 using the first two equations,

w1 = 1− x2, w2 = x1 − 1,

to get
x1(1− x2) = x2(x1 − 1) = µ.

The first equation is the equation of a parabola. So the central path in the
(x1, x2) plane is a parabola. However, we want the path as a function of µ.
To do this we can eliminate x2 using the second equation,

x2 = µ/(x1 − 1)

and substitute into the first:

x1(1− µ/(x1 − 1)) = µ,

or
x21 − (1 + 2µ)x1 + µ = 0.

The solution is
x1 = (1 + 2µ±

√
1 + 4µ2)/2.

Since we must have x1 ≥ 1 for a feasible solution, we must have

x1 = (1 + 2µ+
√

1 + 4µ2)/2.

A similar calculation gives

x2 = (1− 2µ+
√

1 + 4µ2)/2.

We find that the path p(µ) = (x1(µ), x2(µ)) converges to (x1, x2) = (1, 1) as
µ→ 0, which we can easily see is the optimal solution.
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Exercise 17.2

The given problem is

maximize (cos θ)x1 + (sin θ)x2
subject to x1 ≤ 1,

x2 ≤ 1,
x1, x2 ≥ 0.

The optimal solution is clearly (x1, x2) = (1, 1). We have

c =

[
cos θ
sin θ

]
, A =

[
1 0
0 1

]
, b =

[
1
1

]
,

and the central path equations are

x1 + w1 = 1,

x2 + w2 = 1,

y1 − z1 = cos θ,

y2 − z2 = sin θ,

x1z1 = x2z2 = w1y1 = w2y2 = µ.

In this case there are four equations in the unknowns x1, w1, y1, z1, and there
are four other equations in the remaining variables. Thus it is sufficient to
solve the first four:

x1 + w1 = 1,

y1 − z1 = cos θ,

x1z1 = y1w1 = µ.

Using the last two, the first two become

x1 + w1 = 1,

(1/w1 − 1/x1)µ = cos θ.

Using the first to eliminate w1 we find

(1/(1− x1)− 1/x1)µ = cos θ.
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Let λ = cos θ/µ. Then

λx21 + (2− λ)x1 − 1 = 0,

and so
x1 = (λ− 2 +

√
λ2 + 4)/(2λ)

(there is only one solution by the constraint that x1 ≥ 0). We can rewrite
this as

x1 = (c− 2µ+
√
c2 + 4µ2)/(2c),

where c = cos θ. A similar calculation gives

x2 = (c− 2µ+
√
c2 + 4µ2)/(2c),

where c = sin θ. We can immediately see that (x1, x2)→ (1, 1) as µ→ 0. To
get the limit as µ→∞, we can rewrite x1 as

2µ

−c+ 2µ+
√
c2 + 4µ2

,

and then we see that x1 → 1/2 as µ→∞. Similarly, x2 → 1/2 as µ→∞.

Exercise 17.3

We form the more general barrier problem

maximize cTx+
∑

j rj log xj +
∑

i si logwi

subject to Ax+ w = b,

for positive rj and si. We now follow the same steps as in Chapter 17, using
Lagrange multipliers and taking partial derivatives, and we end up with the
four equations

Ax+ w = b,

ATy − z = c,

xjzj = rj, all j,

wiyi = si, all i.

The proof of existence and uniqueness are similar to Chapter 17.
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Exercise 17.4

The given problem is

maximize
∑

j cjxj
subject to

∑
j aijxj = bi,

x ≥ 0.

Since the constraints are equalities, we could consider trying to solve

maximize
∑

j cjξ
2
j

subject to
∑

j aijξ
2
j = bi,

with ξ1, . . . , ξn free variables. If ξ∗ = (ξ∗1 , . . . , ξ
∗
n) is an optimal solution to

the auxiliarly problem then x∗ = (ξ21 , . . . , ξ
2
n) solves the original problem (it

doesn’t matter about the signs of ξ∗1 , . . . , ξ
∗
n).

The advantage of the auxiliary problem is that there are no inequalities
and we could apply Lagrange multipliers. However, the problem is non-linear
and might not be easy to solve.
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