Answers to Exercises, Week 9, MAT3100, V20

Michael Floater

Exercises in Week 9 are: 11.3, 11.2, 11.5, 11.6.

Exercise 11.3

Let's just answer 11.3(b) since 11.3(a) is similar. We suppose that in a matrix game, the payoff matrix $A \in \mathbb{R}^{m, n}$ has the property that column s is dominated by column r, i.e., that $a_{i r} \geq a_{i s}$ for all $i=1, \ldots, m$.

Let $x \in \mathbb{R}^{n}$ be a randomized strategy for the column player, i.e., $x \geq 0$ and $\sum_{j=1}^{n} x_{j}=1$. Then

$$
\begin{aligned}
\min _{i} \sum_{j} a_{i j} x_{j} & =\min _{i}\left(\sum_{j \neq r, s} a_{i j} x_{j}+a_{i r} x_{r}+a_{i s} x_{s}\right) \\
& \leq \min _{i}\left(\sum_{j \neq r, s} a_{i j} x_{j}+a_{i r}\left(x_{r}+x_{s}\right)\right) \\
& =\min _{i} \sum_{j \neq s} a_{i j} y_{r},
\end{aligned}
$$

where $y_{j}=x_{j}, j \neq r$, and $y_{r}=x_{r}+x_{s}$. Then

$$
y=\left(y_{1}, \ldots, y_{s-1}, y_{s+1}, \ldots, y_{n}\right)
$$

is a randomized strategy for the column player in the modified matrix game with payoff matrix B formed by removing column s from A. Therefore,

$$
\min _{i} \sum_{j \neq s} a_{i j} y_{r} \leq \min _{i} \sum_{j \neq s} a_{i j} y_{r}^{*},
$$

where

$$
y^{*}=\left(y_{1}^{*}, \ldots, y_{s-1}^{*}, y_{s+1}^{*}, \ldots, y_{n}^{*}\right)
$$

is an optimal randomized strategy for the column player in the modified game. Then we conclude that

$$
\min _{i} \sum_{j} a_{i j} x_{j} \leq \min _{i} \sum_{j \neq s} a_{i j} y_{r}^{*}
$$

and so

$$
x^{*}=\left(y_{1}^{*}, \ldots, y_{s-1}^{*}, 0, y_{s+1}^{*}, \ldots, y_{n}^{*}\right)
$$

is an optimal randomized strategy for the column player in the original game.
Now consider the payoff matrix

$$
\left[\begin{array}{ccccc}
-6 & 2 & -4 & -7 & -5 \\
0 & 4 & -2 & -9 & -1 \\
-7 & 3 & -3 & -8 & -2 \\
2 & -3 & 6 & 0 & 3
\end{array}\right] .
$$

Since column 4 is dominated by column 3 we can remove column 4:

$$
\left[\begin{array}{cccc}
-6 & 2 & -4 & -5 \\
0 & 4 & -2 & -1 \\
-7 & 3 & -3 & -2 \\
2 & -3 & 6 & 3
\end{array}\right]
$$

Now row 2 dominates row 1 , and we can remove row 2 (from the row player's point of view):

$$
\left[\begin{array}{cccc}
-6 & 2 & -4 & -5 \\
-7 & 3 & -3 & -2 \\
2 & -3 & 6 & 3
\end{array}\right]
$$

Now column 1 is dominated by column 3 and we can remove column 1:

$$
\left[\begin{array}{ccc}
2 & -4 & -5 \\
3 & -3 & -2 \\
-3 & 6 & 3
\end{array}\right]
$$

Now row 2 dominates row 1, and we can remove row 2 :

$$
\left[\begin{array}{ccc}
2 & -4 & -5 \\
-3 & 6 & 3
\end{array}\right]
$$

Now column 3 is dominated by column 2 and we can remove column 3:

$$
\left[\begin{array}{cc}
2 & -4 \\
-3 & 6
\end{array}\right]
$$

Exercise 11.2

The payoff matrix for this game is

$$
\left[\begin{array}{ccccccc}
0 & 1 & -1 & -1 & -1 & -1 & \cdots \\
-1 & 0 & 1 & -1 & -1 & -1 & \cdots \\
1 & -1 & 0 & 1 & -1 & -1 & \cdots \\
1 & 1 & -1 & 0 & 1 & -1 & \cdots \\
1 & 1 & 1 & -1 & 0 & -1 & \cdots \\
1 & 1 & 1 & 1 & -1 & 0 & \cdots \\
\vdots & & & & & & \ddots
\end{array}\right] .
$$

Then all columns 4 to 100 are dominated by the first column, and all rows 4 to 100 dominate row 1 and so the optimal strategies are the same as those for the matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

This we recognise as the paper-scissors-rock game. So the optimal strategy for the column player is

$$
x^{*}=(1 / 3,1 / 3,1 / 3,0, \ldots, 0) \in \mathbb{R}^{100}
$$

and for the row player,

$$
y^{*}=(1 / 3,1 / 3,1 / 3,0, \ldots, 0) \in \mathbb{R}^{100}
$$

Exercise 11.5

If the r-th pure row strategy and the s-th pure column strategy are simultaneously optimal then

$$
\max _{x}(A x)_{r}=\min _{y}\left(A^{T} y\right)_{s},
$$

and this is equivalent to

$$
\max _{j=1, \ldots, n} a_{r j}=\min _{i=1, \ldots, m} a_{i s}
$$

Exercise 11.6

Let $f(x)=\min _{y} y^{T} A x$ and $g(y)=\max _{x} y^{T} A x$. We know that the problems of maximizing $f(x)$ and minimizing $g(y)$ are dual problems. So, by the Weak Duality Theorem, $f(x) \leq g(y)$ for all feasible x and y. By the Minimax Theorem, there exist feasible x^{*} and y^{*} such that

$$
\max _{x}\left(y^{*}\right)^{T} A x=\min _{y} y^{T} A x^{*} .
$$

Therefore, $g\left(y^{*}\right)=f\left(x^{*}\right)$, and hence

$$
\max _{x} f(x)=f\left(x^{*}\right)=g\left(y^{*}\right)=\min _{y} g(y) .
$$

