
Answers to Compulsory Assignment 1
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Michael Floater

Problem 1

1a)

x =

x1x2
x3

 , A =

 0 −3 4
1 −1 0
−3 0 1

 , b =

1
2
0

 , c =

−7
0
2

 .
1b)

The initial dictionary is

η = − 7x2 + 2x3

w1 = 1 + 3x2 − 4x3
w2 = 2 − x1 + x2
w3 = 0 + 3x1 − x3

x3 enters, w3 leaves:

η = − x1 + 0x2 − 2w3

w1 = 1 − 12x1 + 3x2 + 4w3

w2 = 2 − x1 + x2
x3 = 0 − 3x1 − w3

This is an optimal dictionary, so the optimal value is η = 0 and one solu-
tion point is (x1, x2, x3) = (0, 0, 0). We can obtain other solution points by
observing that we can increase x2 arbitrarily since in the x2 column of the
dictionary we have a 0 coefficient at the top, and non-negative coefficients
below. So any point (x1, x2, x3) = (0, λ, 0) with λ ≥ 0 is also a solution point.
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1c)

x =

 x1
...

xn+m

 , A =


a1,1 · · · a1,n 1 0 · · · 0
a2,1 · · · a2,n 0 1 · · · 0

...
...

...
...

am,1 · · · am,n 0 0 · · · 1

 , b =

 b1...
bm

 , c =



c1
...
cn
0
...
0


.

Problem 2

2a)

The initial dictionary is

η = − 3x1 + 6x2
w1 = 6 − 2x1 − x2
w2 = 2 + x1 − 2x2

x2 enters, w2 leaves:

η = 6 + 0x1 − 3w2

w1 = 5 − (5/2)x1 + (1/2)w2

x2 = 1 + (1/2)x1 − (1/2)w2

This is an optimal dictionary. So (x1, x2) = (0, 1) is an optimal solution.
To find more optimal solutions, notice that the coefficent of x1 in η in this
dictionary is 0. So we can pivot again, letting x1 enter the basis. Then w1

leaves the basis and we get

η = 6 + 0w1 − 3w2

x1 = 2 − (2/5)w1 + (1/5)w2

x2 = 2 − (1/5)w1 − (2/5)w2

This is also an optimal dictionary and so (x1, x2) = (2, 2) is another optimal
solution. Therefore, all points of the form

(x1, x2) = (1− λ)(0, 1) + λ(2, 2), λ ∈ [0, 1],

are optimal solutions and η = 6 at all those points.
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2b)

The feasible region is shown in Figure 1.
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Figure 1: Feasible region and optimal solutions in red.

The non-uniqueness occurs because the vector c = (−3, 6) defining the
objective function η = c1x1 + c2x2 is perpendicular to the edge of the feasible
region connecting (0, 1) to (2, 2):

(−3, 6) · ((2, 2)− (0, 1)) = (−3, 6) · (2, 1) = −3× 2 + 6× 1 = 0.

2c)

The initial dictionary is

η = + 3x1 + 2x2
w1 = 3 − x1 + x2
w2 = 2 − x1

We could let x2 enter the basis, but then we see that we can increase x2
arbitrarily (keeping both w1 and w2 non-negative). So all points (x1, x2) =
(0, λ), where λ ≥ 0, are feasible and η = 2λ→∞ as λ→∞. So the problem
is unbounded.
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Problem 3 – Linear Regression

3a)

We introduce the non-negative variables

ti := |bi −
∑
j

aijxj|, i = 1, . . . , n.

We then want to minimize
∑

i ti. Since

ti = max

(
bi −

∑
j

aijxj,
∑
j

aijxj − bi

)
,

we have the constraints

bi −
∑
j

aijxj ≤ ti,
∑
j

aijxj − bi ≤ ti,

or
−
∑
j

aijxj − ti ≤ −bi,
∑
j

aijxj − ti ≤ bi.

3b)

To solve the L1 regression, we replace the free variables x1 and x2 by y1− y2
and y3−y4 respectively where y1, y2, y3, y4 ≥ 0. We now have an LP problem
in standard form:

maximize −
∑n

i=1 ti
subject to −a1(y1 − y2)− (y3 − y4)− t1 ≤ −b1,

a1(y1 − y2) + (y3 − y4)− t1 ≤ b1,
...

−an(y1 − y2)− (y3 − y4)− tn ≤ −bn,
an(y1 − y2) + (y3 − y4)− tn ≤ bn,

y1, y2, y3, y4, t1, . . . , tn ≥ 0.

We can write this as

max cTx subject to Ãx ≤ b̃, x ≥ 0,
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where

x =



y1
y2
y3
y4
t1
...
tn


, b̃ =


−b1
b1
−b2
b2
...

 , c =



0
0
0
0
−1
...
−1


,

and

Ã =


−a1 a1 −1 1 −1 0 · · · 0
a1 −a1 1 −1 −1 0 · · · 0
−a2 a2 −1 1 0 −1 · · · 0
a2 −a2 1 −1 0 −1 · · · 0
...

 .
I used the routine ‘simplex.m’ to solve this. The solution is

(y1, y2, y3, y4, t1, t2, . . .) = (2, 0, 0, 0, ∗, ∗, . . .).

Converting to the original variables we get

(x1, x2) = (y1 − y2, y3 − y4) = (2, 0).

The L2 regression gives

[x1, x2]
T = (ATA)−1AT b = [2.1212, 0.4545]T .

The two regression lines are show in Figure 2.
In general, L2 regression is more sensitive to outliers than L1 regression,

due to the squaring of the errors. However, L2 regression is easier to compute.
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Figure 2: Blue: L1 regression. Red: L2 regression.
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