Answers to Compulsory Assignment 1 MAT3100 Linear Optimization, Spring 2020

Michael Floater

Problem 1

1a)

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad A=\left[\begin{array}{ccc}
0 & -3 & 4 \\
1 & -1 & 0 \\
-3 & 0 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \quad c=\left[\begin{array}{c}
-7 \\
0 \\
2
\end{array}\right] .
$$

1b)
The initial dictionary is

η	$=$			$-7 x_{2}$	+	$2 \mathbf{x}_{\mathbf{3}}$
w_{1}	$=1$		+	+	$3 x_{2}$	-
w_{2}	$=$	-	x_{1}	+	x_{2}	
w_{3}	$=0$	$+3 x_{1}$				
\mathbf{w}_{3}						

x_{3} enters, w_{3} leaves:

η	$=$		-	x_{1}	+	$0 x_{2}$	-

This is an optimal dictionary, so the optimal value is $\eta=0$ and one solution point is $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$. We can obtain other solution points by observing that we can increase x_{2} arbitrarily since in the x_{2} column of the dictionary we have a 0 coefficient at the top, and non-negative coefficients below. So any point $\left(x_{1}, x_{2}, x_{3}\right)=(0, \lambda, 0)$ with $\lambda \geq 0$ is also a solution point.

1c)

$x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n+m}\end{array}\right], A=\left[\begin{array}{ccccccc}a_{1,1} & \cdots & a_{1, n} & 1 & 0 & \cdots & 0 \\ a_{2,1} & \cdots & a_{2, n} & 0 & 1 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & & \vdots \\ a_{m, 1} & \cdots & a_{m, n} & 0 & 0 & \cdots & 1\end{array}\right], b=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right], c=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n} \\ 0 \\ \vdots \\ 0\end{array}\right]$.

Problem 2

2a)
The initial dictionary is

$$
\begin{aligned}
& \eta= \\
&-6 x_{1}+6 x_{2} \\
& \hline w_{1}=6-2 x_{1}- \\
& w_{2}=2+x_{2} \\
& x_{1}-2 x_{2}
\end{aligned}
$$

x_{2} enters, w_{2} leaves:

$$
\begin{array}{rrrrr}
\eta & =6 & + & 0 x_{1} & - \\
\hline w_{1} & = & 5 & - & (5 / 2) x_{1} \\
x_{2} & = & + & (1 / 2) w_{2} \\
x_{2} & (1 / 2) x_{1} & - & (1 / 2) w_{2}
\end{array}
$$

This is an optimal dictionary. So $\left(x_{1}, x_{2}\right)=(0,1)$ is an optimal solution. To find more optimal solutions, notice that the coefficent of x_{1} in η in this dictionary is 0 . So we can pivot again, letting x_{1} enter the basis. Then w_{1} leaves the basis and we get

$$
\begin{array}{rrrrrr}
\eta & =6 & + & 0 w_{1} & - & 3 w_{2} \\
\hline x_{1} & = & 2 & - & (2 / 5) w_{1} & + \\
x_{2} & = & 2 & - & (1 / 5) w_{1} & - \\
(2 / 5) w_{2}
\end{array}
$$

This is also an optimal dictionary and so $\left(x_{1}, x_{2}\right)=(2,2)$ is another optimal solution. Therefore, all points of the form

$$
\left(x_{1}, x_{2}\right)=(1-\lambda)(0,1)+\lambda(2,2), \quad \lambda \in[0,1]
$$

are optimal solutions and $\eta=6$ at all those points.

2b)

The feasible region is shown in Figure 1.

Figure 1: Feasible region and optimal solutions in red.
The non-uniqueness occurs because the vector $c=(-3,6)$ defining the objective function $\eta=c_{1} x_{1}+c_{2} x_{2}$ is perpendicular to the edge of the feasible region connecting $(0,1)$ to $(2,2)$:

$$
(-3,6) \cdot((2,2)-(0,1))=(-3,6) \cdot(2,1)=-3 \times 2+6 \times 1=0
$$

2c)

The initial dictionary is

$$
\begin{array}{rllll}
\eta & = & +3 x_{1}+2 x_{2} \\
\hline w_{1} & =3 & - & x_{1}+ & x_{2} \\
w_{2} & =2-x_{1} & &
\end{array}
$$

We could let x_{2} enter the basis, but then we see that we can increase x_{2} arbitrarily (keeping both w_{1} and w_{2} non-negative). So all points $\left(x_{1}, x_{2}\right)=$ $(0, \lambda)$, where $\lambda \geq 0$, are feasible and $\eta=2 \lambda \rightarrow \infty$ as $\lambda \rightarrow \infty$. So the problem is unbounded.

Problem 3 - Linear Regression

3a)

We introduce the non-negative variables

$$
t_{i}:=\left|b_{i}-\sum_{j} a_{i j} x_{j}\right|, \quad i=1, \ldots, n
$$

We then want to minimize $\sum_{i} t_{i}$. Since

$$
t_{i}=\max \left(b_{i}-\sum_{j} a_{i j} x_{j}, \sum_{j} a_{i j} x_{j}-b_{i}\right)
$$

we have the constraints

$$
b_{i}-\sum_{j} a_{i j} x_{j} \leq t_{i}, \quad \sum_{j} a_{i j} x_{j}-b_{i} \leq t_{i},
$$

or

$$
-\sum_{j} a_{i j} x_{j}-t_{i} \leq-b_{i}, \quad \sum_{j} a_{i j} x_{j}-t_{i} \leq b_{i} .
$$

3b)
To solve the L_{1} regression, we replace the free variables x_{1} and x_{2} by $y_{1}-y_{2}$ and $y_{3}-y_{4}$ respectively where $y_{1}, y_{2}, y_{3}, y_{4} \geq 0$. We now have an LP problem in standard form:

$$
\begin{aligned}
\operatorname{maximize}-\sum_{i=1}^{n} t_{i} & \\
\text { subject to } & -a_{1}\left(y_{1}-y_{2}\right)-\left(y_{3}-y_{4}\right)-t_{1}
\end{aligned} \leq-b_{1}, ~ 子 \begin{aligned}
a_{1}\left(y_{1}-y_{2}\right)+\left(y_{3}-y_{4}\right)-t_{1} & \leq b_{1}, \\
\vdots & \\
-a_{n}\left(y_{1}-y_{2}\right)-\left(y_{3}-y_{4}\right)-t_{n} & \leq-b_{n}, \\
a_{n}\left(y_{1}-y_{2}\right)+\left(y_{3}-y_{4}\right)-t_{n} & \leq b_{n}, \\
y_{1}, y_{2}, y_{3}, y_{4}, t_{1}, \ldots, t_{n} & \geq 0
\end{aligned}
$$

We can write this as

$$
\max c^{T} x \quad \text { subject to } \quad \tilde{A} x \leq \tilde{b}, x \geq 0
$$

where

$$
x=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
t_{1} \\
\vdots \\
t_{n}
\end{array}\right], \tilde{b}=\left[\begin{array}{c}
-b_{1} \\
b_{1} \\
-b_{2} \\
b_{2} \\
\vdots
\end{array}\right], c=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
-1 \\
\vdots \\
-1
\end{array}\right]
$$

and

$$
\tilde{A}=\left[\begin{array}{cccccccc}
-a_{1} & a_{1} & -1 & 1 & -1 & 0 & \cdots & 0 \\
a_{1} & -a_{1} & 1 & -1 & -1 & 0 & \cdots & 0 \\
-a_{2} & a_{2} & -1 & 1 & 0 & -1 & \cdots & 0 \\
a_{2} & -a_{2} & 1 & -1 & 0 & -1 & \cdots & 0 \\
\vdots & & & & & & &
\end{array}\right]
$$

I used the routine 'simplex.m' to solve this. The solution is

$$
\left(y_{1}, y_{2}, y_{3}, y_{4}, t_{1}, t_{2}, \ldots\right)=(2,0,0,0, *, *, \ldots) .
$$

Converting to the original variables we get

$$
\left(x_{1}, x_{2}\right)=\left(y_{1}-y_{2}, y_{3}-y_{4}\right)=(2,0) .
$$

The L_{2} regression gives

$$
\left[x_{1}, x_{2}\right]^{T}=\left(A^{T} A\right)^{-1} A^{T} b=[2.1212,0.4545]^{T} .
$$

The two regression lines are show in Figure 2.
In general, L_{2} regression is more sensitive to outliers than L_{1} regression, due to the squaring of the errors. However, L_{2} regression is easier to compute.

Figure 2: Blue: L_{1} regression. Red: L_{2} regression.

