
Deduction of Simplex implementation

Øyvind Ryan

November 18, 2021

In chapter 6 a detailed step-by-step procedure for the simplex method is
gone through. While that procedure can be made efficient, it is not the most
pedagocial one. The deductions listed below express pivoting and the simplex
method in simple matrix terms, and all this is used in an implementation for the
simplex method. The method is called simplex, and it takes as input A, b and
c from an LP in standard form, i.e., the constraints are on the form Ax ≤ b, as
in the first chapters of the book.

A confusing thing is that the dictionary representation we will use in the
code differs somewhat from the standard form. In dictionary form we will write
w = b + Ax ≥ 0. This means that there is a sign change in A when compared
to the standard form and the first chapters in the book. When computing the
ratios in the code, one can therefore see an extra sign change to accomodate
for this. Another effect are two extra sign changes in the pivot method (the
one I have previously introduced in the course assumed the form Ax ≤ b for
the constraints). This is why there is a new function pivot0 absorbing these
changes to pivot.

1 How a pivot transforms a dictionary

The dictionary matrix, denoted by D in the following, has dimension (m+ 1)×
(n+ 1), where n/m are the number of variables/constraints in the primal prob-
lem. In Matlab indices start at 1, but here we will assume that the row/column
indices in D start at 0. This means that constant terms in the objective and
the constraints are found at index zero. It also means that, logically enough,
contributions from xi can be found in column i, and constraint j can be found
in row j. The elements in D will be dnoted by dk,l.

Assume that r is entering, s is leaving. We rewrite

xs = b̄s +

n∑
j=1

āsjxj

to

xr =
1

āsr

−b̄s −∑
j 6=r

āsjxj + xs

 .

This means that row s in the dictionary is transformed according to

(a0, . . . , an)→ 1

āsr
(−a0, . . . ,−ar−1, 1,−ar+1, . . . ,−an).

1



For row t with t 6= s, we rewrite

xt = b̄t +

n∑
j=1

ātjxj = b̄t +
∑
j 6=r

ātjxj + ātrxr

= b̄t +
∑
j 6=r

ātjxj +
ātr
āsr

−b̄s −∑
j 6=r

āsjxj + xs


= b̄t −

ātr
āsr

b̄s +
∑
j 6=r

(
ātj −

ātr
āsr

āsj

)
xj +

ātr
āsr

xs.

This means that row t in the dictionary is transformed according to

dt,: = dt,: −
ātr
āsr

ds,: = dt,: −
dt,r
ds,r

ds,:

for t ≥ 1, where : is any index different from r. For index r the entry is ātr

āsr
.

For the objective we have

η = η̄ +

n∑
j=1

c̄jxj = η̄ +
∑
j 6=r

c̄jxj +
c̄r
āsr

−b̄s −∑
j 6=r

āsjxj + xs


= η̄ − c̄r

āsr
b̄s +

∑
j 6=r

(
c̄j −

cr
āsr

āsj

)
xj +

c̄r
āsr

xs.

This means that row 0 in the dictionary is transformed according to

d0,: = d0,: −
c̄r
āsr

ds,: = d0,: −
d0,r

ds,r
ds,:,

which says that the same update rule also holds from t = 0. In summary the
dictionary is updated as follows, except for row s and column r:

D = D − 1

dsr
d:,rds,:.

We can correct for row s and column r as follows:

d:,r =
1

dsr
d:,r

ds,: = − 1

dsr
ds,:

ds,r =
1

dsr

This explains the following lines in pivot0.

d1 = d0 - d0(:,r) * d0(s,:) / d0(s,r);

d1(:,r) = d0(:,r) / d0(s,r);

d1(s,:) = -d0(s,:) / d0(s,r);

d1(s,r) = 1 / d0(s,r);

The upper left corner of an optimal dictionary will reflect the optimal value of
the current dictionary.

2



1.1 Applying the two-phase method

If the primal dictionary is not feasible, the code applies the two-phase method
to the feasible dual problem obtained from changing the objective to c = −1,
where 1 is the vector of all ones. When applying the two-phase method, we
need to transform the objective. The variables x1, . . . , xn are represented by
indices 1, . . . , n, while the slack variables w1, . . . , wm are represented by indices
n + 1, . . . , n + m. After some iterations of simplex, assume that the indices of
the basic variables are given by B, and that the indices of the nonbasic variables
are given by N . The objective is

(
c1 · · · cn 0 · · · 0

)


x1

...
xn
w1

...
wm


= (CN )TxN + (CB)TxB

= (CN )TxN + (CB)T d1:m,:

(
1
xN

)
= (CB)T d1:m,0 + ((CN )T + (CB)T d1:m,1:n)xN ,

so that the transformed objective has

• constant term d0,0 = (CB)T d1:m,0,

• coefficients d0,1:n = (CN )T + (CB)T d1:m,1:n.

This explains the following lines in the code:

c_ext = [c;zeros(m,1)];

C_B = c_ext(B);

C_N = c_ext(N);

d(1,1) = C_B’*d(2:(m+1),1);

d(1,2:n+1) = C_B’*d(2:(m+1),2:(n+1)) + C_N’;

Swapping between the primal and dual problems

Recall that the primal variables are ordered as (x1, . . . , xn, w1, . . . , wm) (the
slack variables listed at the end). Similarly, the dual variables are ordered as
y1, . . . , ym, z1, . . . , zn (the dual slack variables listed at the end). When we pass
between the primal and dual problems, a primal basic variable is mapped to its
complementary nonbasic variable, i.e., xi ↔ zi, wj ↔ yj . This maps the indices
of the m+ n variables as follows:

1. From primal to dual: (1:n)→(m+1):(n+m) and (n+1):(n+m)→(1:m).

2. From dual to primal: (1:m)→(n+1):(n+m) and (m+1):(n+m)→(1:n).

3



In the code the (feasible) dual problem (with modified objective) is solved, so
we need to pass from the dual to primal. If B0 and N0 are the indices of the
basic and nonbasic variables in the dual problem, it follows from the second
point above that the corresponding indices for the basic and nonbasic variables
in the primal problem are computed from the following lines in the code:

I=[(n+1:n+m) (1:n)]’; % Used to map dual variables to their complementary primal variables.

B=I(N_0); N=I(B_0);

The variable I merely captures the mapping from 2. above.

Roundoff issues

There are three roundoff issues addressed in the code. Those can be seen at the
three lines where the variable tol is used (tol is simply a very small number,
close to machine precision).

1. Assume that some of the coefficients in the optimal dictionary are zero.
Due to roundoff errors, we may compute a very small positive number
instead. The code assumes in this case that the number is zero, so that
the dictionary is assumed optimal as long as all coefficients are smaller
than tol.

2. The book uses the convention that 0/0 = 0 in computing ratios. Due
to roundoff errors neither the numerator nor the denominator typically
compute to exactly zero. If both of these are smaller than tol in absolute
value, the code will assume that both are zero, and replace the ratio with
0.

3. If the maximum ratio is ≤ 0, the problem is unbounded. Due to roundoff
errors the maximum ratio may compute to a small positive number. The
code assumes that the maximum ratio is zero if something less than tol

is computed, so that the problem is assumed unbounded in this case.

These issues may be highlighted other places in the book, but they seem not to
be mentioned in the curriculum of the course.

2 The setup from chapter 6

This is less pedagogical, but more efficient. We leave the question of efficient
LU out for now.

4


