
LP. Lecture 1. Chapter 1 and 2: example and the simplex
algorithm

This course gives an introduction to linear optimization and related
areas.

I what is LP (lin.opt.=lin.programmering)
I more generally: mathematical optimization
I theory, methods, applications
I these notes are based on the textbook we use: R. Vanderbei:

"Linear programming: fundations and extensions". Third
edition, Springer (2008). (You may also use Second Ed.,
Kluwer (2001)).

I a practical example: production planning
I simplex algorithm, some concepts
I algorithm
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What is linear optimization?

I Linear optimization is to maximize (or minimize) a linear
function in several variables subject to constraints that are
linear equations and linear inequalities.
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Example: production planning

Products:
I door (with glass)
I window

Production facility:
I Factory 1: produces metal frame
I Factory 2: produces wooden frame
I Factory 3: produces glass and mounts the parts

Production of each product is made in series of 200 items.
Data:

Hours/series Hours at disposal
door window

Factory 1 1 0 4
Factory 2 0 2 12
Factory 3 3 2 18

Revenue/series 3000 5000
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Problem: How much should be produced of each product in order
to maximize the revenue?

The production plan as an LP problem:

maximize 3x1+ 5x2

subject to
x1 ≤ 4

2x2 ≤ 12
3x1+ 2x2 ≤ 18
x1 ≥ 0, x2 ≥ 0.

I We want to find an optimal solution, i.e., a vector (x1, x2)
which satisfies all the constraints and has a maximum value of
the function f (x1, x2) = 3x1 + 5x2.

I A vector satisfying all the constraints is called a feasible
solution.

I The function we want to maximize is called the objective
function.

4 / 24



Later we will work with LP problems in matrix form; then the
problem is as follows

max cT x
f.a.

Ax ≤ b
x ≥ O

Here c and x are column vectors with n components, A is a m × n
matrix and b is a column vector with m components. O denotes
the zero vector (of suitable length). The inequality Ax ≤ b is a
vector inequality and means that ≤ holds componentwise (for every
component).

Analysis of this problem and methods for solving it are based on
linear algebra.
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LP is closely tied to theory/methods for solving systems of linear
inequalities. Such systems have the form

Hx ≤ f

where H is a m × n matrix and f is a column vector (length m).

Example.
3x1 + x2 ≤ 4
x1 − 2x2 ≤ 17
−x1 ≤ 0

Central questions;
I existence of solution,
I how to find a solution, possibly all solutions.

Such problems may be written as LP problems: let the objective
function have all its coefficients equal to 0.

More about linear inequalities later.
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The simplex method

The simplex method is a general method for solving LP problems.

I Later we distinguish between the simplex method and the
simplex algorithm, but this is not important now.

I The method was developed by George B. Dantzig around 1947
in connection with the investigation of transportation problems
for the U.S. Air Force.

I The work was published in 1951.
I An interesting article in Washington Post i 2005 may be found

on the course web page; Dantzig passed away in 2005.
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The simplex algorithm, an example
Some other scientists who were early contributors to the
development of linear programming were T.J.Koopmans and
L.V.Kantorovich, and they were both awarded the Nobel prize in
economics for this work in 1975.

Example: We want to solve

max 5x1+ 4x2+ 3x3

subject to
(i) 2x1+ 3x2+ x3 ≤ 5
(ii) 4x1+ x2+ 2x3 ≤ 11
(iii) 3x1+ 4x2+ 2x3 ≤ 8

x1, x2, x3 ≥ 0.
First, we convert to equations by introducing slack variables for
every ≤-inequality: for instance (i) is replaced by

w1 = 5− 2x1 − 3x2 − x3 and w1 ≥ 0.
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Then the problem may be written in the following form which we
call a dictionary:

max η = 5x1 + 4x2 + 3x3

subj. to
(i) w1 = 5 − 2x1 − 3x2 − x3

(ii) w2 = 11 − 4x1 − x2 − 2x3

(iii) w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2, x3,w1,w2,w3 ≥ 0.

I Left-hand side: dependent variables = basic variables.
I Right-hand side: independent variables = nonbasic variables.

Initial solution: Let x1 = x2 = x3 = 0 and this gives
w1 = 5,w2 = 11,w3 = 8.

We always let the nonbasic variables be equal to zero. The basic
variables are then uniquely determined; they become equal to the
constants on the right-hand side.
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Is this an optimal solution? No !!
For instance, we can increase x1 while keeping x2 = x3 = 0. Then

I η (the value of the objective function) will increase
I we obtain new values for the basic variables; these new values

are determined by x1

I the more we increase x1, the more η increases!
I watch out: the wj ’s approach 0!

Maximum increase of x1: want to avoid that the basic variables,
one or more, become negative. From w1 = 5− 2x1, w2 = 11− 4x1
and w3 = 8− 3x1 we get x1 ≤ 5/2, x1 ≤ 11/4, x1 ≤ 8/3 so we can
increase x1 to the smallest value, namely 5/2.
This gives the new solution x1 = 5/2, x2 = x3 = 0 and therefore
w1 = 0,w2 = 1,w3 = 1/2. And now η = 25/2. Thus: a (much)
better solution!!
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How to proceed? The dictonary is well suited for testing optimality,
swo we want to transform to a new dictionary.

I We want x1 and w1 to “switch sides”. So: x1 should go into
the basis, while w1 goes out of the basis. This can be done by
using the w1-equation in order to eliminate x1 from all other
equations.

I Equivalent: we may use elementary row operations on the
system in order to eliminate x1: (i) solve for x1:
x1 = 5/2− (1/2)w1 − (3/2)x2 − (1/2)x3, and (ii) add a
suitable multiple of this equation to the other equations so
that x1 disappears and is replaced by terms with w1.

Remember: elementary row operations do not change the solution
set of the linear system of equations.
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Result:

η = 12.5 − 2.5w1 − 3.5x2 + 0.5x3

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5x3

w2 = 1 + 2w1 + 5x2

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3

We have now performed a pivot: the use of elementary row
operations (or elimination) to switch two variables (one into and
one out of the basis).
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Repeat the process!

Optimal? No: we can increase η by increasing x3 from zero! May
increase to x3 = 1 for then w3 = 0 (while the other basic variables
are nonnegative).

Then we do another pivot: x3 goes into the basis, and w3 leaves
the basis. This gives the new dictionary:

η = 13 − w1 − 3x2 − w3

x1 = 2 − 2w1 − 2x2 + w3

w2 = 1 + 2w1 + 5x2

x3 = 1 + 3w1 + x2 − 2w3

Here we see that all coefficients of the nonbasic variables are
nonpositive (in fact negative) in the equation for η. Then every
increase of one or more nonbasic variables will result in a soluton
where η ≤ 13.
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But: any feasible solution is obtained by a suitable choice of the
nonbasic variables! Why?

Conclusion: we have found an optimal solution! It is
w1 = x2 = w3 = 0 and x1 = 2,w2 = 1, x3 = 1.
The corresponding value of η is 13, and this is called the optimal
value.
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The simplex method, in general

Consider a general LP problem

max
∑n

j=1 cjxj

subj. to ∑n
j=1 aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n.

where we (now) assume that bi ≥ 0 for all i ≤ m.
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Introduce slack variables

η =
∑n

j=1 cjxj

wi = bi −
∑n

j=1 aijxj for i = 1, . . . ,m

We do not need to distinguish between slack variables and the
original variabels so we get the following dictionary:

η =
∑n

j=1 cjxj

xn+i = bi −
∑n

j=1 aijxj for i = 1, . . . ,m

where we have replaced wi by xn+i . So x ∈ IRn+m.
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The algorithm starts with this dictionary where xn+1, . . . , xn+m are
basic variables and x1, . . . , xn are nonbasic variables. Let

I B be the index set of the basic variables.
I N be the index set of the nonbasic variables.

So, initially B = {n + 1, . . . , n + m}, N = {1, . . . , n}. The initial
solution is

xj = 0 for j = 1, . . . , n
xn+i = bi for i = 1, . . . ,m

and the corresponding value of η is η = 0. Such a solution is called
a basic solution.
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Every iteration is a pivot (or change of basis) where
I one index k is moved from N to B (xk is entering (ingoing)

variable; it is a new basic variable because it results in an
increase of η),

I another index l is moved from B to N (xl is leaving
(outgoing) variable; this variable leaves the basis because it
becomes 0 as the first one, and

I we find the new dictionary from the old by performing row
operations (or elimination)

I the basic solution that corresponds to the new dictionary is
feasible.

At the start of every pivot we have the dictionary (with b̄i ≥ 0):

η = η̄ +
∑

j∈N c̄jxj

xi = b̄i −
∑

j∈N āijxj for i ∈ B .
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Selection of entering variable: choose a k ∈ N with c̄k > 0. If no
such index exists, the current solution is optimal and we terminate.
Often several c̄j ’s are positive. There are several principles for
selection of the entering variable, but a simple, and often used,
prnciple is to choose k = j with c̄j largest possible. Why?

Selection of leaving variable: Also here we may have several
choices. First we have to determine the maximum increase of the
entering variable xk . From

xi = bi − āikxk for i ∈ B

we see that
I if āik ≤ 0, xi will increase when xk is increased. Such basic

variables will not become zero when xk is increased (we
assume now that b̄i > 0)

I if, however, āik > 0, then xi will decrease and it becomes zero
when

xk = bi/āik .
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Selection of leaving variable, cont.
So, we can increase xk to the value

θ := min{bi/āik : āik > 0}.

What happens when xk = θ?
Well, all variables are still nonnegative. Good! And at least one
basic variable has become zero, in fact xi = 0 for all i ∈ B satisfying

bi/āik = θ.

Conclusion: Leaving variable xl is selected so that

bl/āl ,k = min{bi/āik : āik > 0}.

Pivot rule: a rule which tells us which entering variable to choose
and which leaving variable to choose.

Several pivot rules are around, so we get several variants of the
simplex algorithm.
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The pivot is terminated by the row operations:
assume xk is entering variable and xl is leaving variable. Then xl is
on the left-hand side in “equation number l”:

xl = b̄l −
∑
j∈N

āljxj

For every equation i 6= l we add
āik/ālk times equation l to equation i .
Furthermore, we use equation l to solve for xk and therefore
express xk as a function of the other variables.

Result: an equivalent system of equations is obtained, so the same
solutions, and with coefficient 0 associated with each xk in every
equation i 6= l . Further, the new basis variable is on the left-hand
side! This is the new dictionary.
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Comments

Some questions remain:

I how to find an initial basic feasible solution if there are
negative bi ’s?

I in a dictionary: what happens if some b̄i ’s are 0? Does this
cause problems for the pivot rule?

I will the algorithm terminate?
I and, if not, can we repair this somehow?

We will start working on these questions in Lecture 2!

Finally, let us consdier an important application of LP in connection
with linear l1-approximasjon.
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Application: linear approximation

Let A ∈ IRm×n and b ∈ IRm, and let ai be the i ’th row in A
considered as a column vector. Recall that the l1-norm of a vector
y ∈ IRn is ‖y‖1 =

∑n
i=1 |yi |.

The linear approximation problem

min{‖Ax − b‖1 : x ∈ IRn}

may be solved as the following LP problem

min
∑m

i=1 zi

subj.to
aT
i x − bi ≤ zi (i ≤ m)

−(aT
i x − bi ) ≤ zi (i ≤ m)
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Proof: Because every optimal solution in this LP satisfies
zi = |aT

i x − bi | for every i ≤ m.

This means that one has an alternative method to the traditional
least squares method based on solving min{‖Ax − b‖2 : x ∈ IRn}
and this problem has lots of important application (see any linear
algebra textbook).

A similar LP approach works for the linear approximation problem

min{‖Ax − b‖∞ : x ∈ IRn}

in the `∞-norm given by ‖z‖∞ = maxi |zi |.
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