Answers to Exercises, Week 3, MAT3100, V20

Michael Floater

Exercises in Week 3 are: 1.2, 2.3, 2.4, 2.9, 2.10 of Vanderbei.

Exercise 1.2

There are nine variables, each variable is the number of tickets (one per passenger) we want to sell, of each of the nine types:

$$\begin{array}{cccc} x_Y^{IN} & x_Y^{NB} & x_Y^{IB} \\ x_B^{IN} & x_B^{NB} & x_B^{IB} \\ x_M^{IN} & x_M^{NB} & x_M^{IB} \end{array}$$

These variables are all non-negative. The income will then be

$$\begin{split} \eta &= 300 x_Y^{IN} + 160 x_Y^{NB} + 360 x_Y^{IB} \\ &+ 220 x_B^{IN} + 130 x_B^{NB} + 280 x_B^{IB} \\ &+ 100 x_M^{IN} + 80 x_M^{NB} + 140 x_M^{IB}, \end{split}$$

and the upper bounds decided on by Ivy Air are:

$$\begin{array}{ll} x_Y^{IN} \leq 4 & x_Y^{NB} \leq 8 & x_Y^{IB} \leq 3 \\ x_B^{IN} \leq 8 & x_B^{NB} \leq 13 & x_B^{IB} \leq 10 \\ x_M^{IN} \leq 22 & x_M^{NB} \leq 20 & x_M^{IB} \leq 18. \end{array}$$

Since the plane holds at most 30 passengers, there are two further constraints. For the first flight, Ithaca-Newark, we require

$$\begin{aligned} x_Y^{IN} + x_Y^{IB} \\ + x_B^{IN} + x_B^{IB} \\ + x_M^{IN} + x_M^{IB} \le 30, \end{aligned}$$

and for the second flight, Newark-Boston, we require

$$\begin{aligned} x_Y^{NB} + x_Y^{IB} \\ + x_B^{NB} + x_B^{IB} \\ + x_M^{NB} + x_M^{IB} \le 30. \end{aligned}$$

This is the LP problem.

We can put it into standard form by relabelling the variables

$$\begin{array}{ll} x_1 = x_Y^{IN} & x_2 = x_Y^{NB} & x_3 = x_Y^{IB} \\ x_4 = x_B^{IN} & x_5 = x_B^{NB} & x_6 = x_B^{IB} \\ x_7 = x_M^{IN} & x_8 = x_M^{NB} & x_9 = x_M^{IB}. \end{array}$$

Then the LP problem is

$$\begin{array}{ll} \text{maximize} & c^T x\\ \text{subject to} & Ax & \leq b,\\ & x & \geq 0, \end{array}$$

where $x = [x_1, ..., x_9]^T$,

 $c = [300, 160, 360, 220, 130, 280, 100, 80, 140]^T,$ $b = [4, 8, 3, 8, 13, 10, 22, 20, 18, 30, 30]^T,$

and

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}.$$

Using the simplex method the solution comes out to be:

$$\begin{array}{lll} x_1 = x_Y^{IN} = 4 & x_2 = x_Y^{NB} = 8 & x_3 = x_Y^{IB} = 3 \\ x_4 = x_B^{IN} = 8 & x_5 = x_B^{NB} = 9 & x_6 = x_B^{IB} = 10 \\ x_7 = x_M^{IN} = 5 & x_8 = x_M^{NB} = 0 & x_9 = x_M^{IB} = 0. \end{array}$$

Exercise 2.3

The LP problem is

maximize
$$2x_1 - 6x_2$$

subject to $-x_1 - x_2 - x_3 \leq -2,$
 $2x_1 - x_2 + x_3 \leq 1,$
 $x_1, x_2, x_3 \geq 0.$

We need to use the two-phase method since one of the right hand sides is negative. So we solve the auxiliary problem,

minimize
$$x_0$$

subject to $-x_1 - x_2 - x_3 \leq -2 + x_0,$
 $2x_1 - x_2 + x_3 \leq 1 + x_0,$
 $x_0, x_1, x_2, x_3 \geq 0.$

We want to minimize x_0 to 0 to get a feasible solution to the original problem.

We can write the auxiliary problem as

maximize
$$-x_0$$

subject to $-x_1 - x_2 - x_3 - x_0 \leq -2,$
 $2x_1 - x_2 + x_3 - x_0 \leq 1,$
 $x_0, x_1, x_2, x_3 \geq 0.$

We introduce the slack variables

$$w_1 = -2 + x_1 + x_2 + x_3 + x_0,$$

$$w_2 = 1 - 2x_1 + x_2 - x_3 + x_0,$$

and then the initial dictionary is

η	=								—	x_0
w_1	=	-2	+	x_1	+	x_2	+	x_3	+	x_0
w_2	=	1	_	$2x_1$	+	x_2	—	x_3	+	x_0

This is not a feasible dictionary because there are negative values in the first column. However, after one iteration we will obtain a feasible dictionary. To do this we put x_0 into the basis and we take the variable which has the most negative value in the first column, in this case, w_1 , which has the value -2 in the first column. The new dictionary is then

r	1	=	-2	+	x_1	+	x_2	+	x_3	—	w_1
x_0	0	=	2	_	x_1	—	x_2	_	x_3	+	w_1
w_2	2	=	3	_	$3x_1$			_	$2x_3$	+	w_1

This is a feasible dictionary. We now continue with the simplex algorithm as normal. We can increase any of x_1, x_2, x_3 here. If we increase x_2 then x_0 will leave the basis and we get

This is now an optimal dictionary and the objective function η has value 0 and so we have obtained a feasible solution to the orginal problem, i.e., $x_1 = 0, x_2 = 2, x_3 = 0$. We can now return to the orginal problem. We can just drop the x_0 column, and compute the original objective function in terms of the non-basic variables:

$$\eta = 2x_1 - 6x_2 = 2x_1 - 6(2 - x_1 - x_3 + w_1)$$

= -12 + 8x_1 + 6x_3 - 6w_1.

Thus in Phase II we start with the feasible dictionary

η	=	-12	+	$8x_1$	+	$6x_3$	—	$6w_1$	
x_2	=	2	_	x_1	—	x_3	+	w_1	
w_2	=	3	_	$3x_1$	_	$2x_3$	+	w_1	

We now apply the simplex algorithm in the usual way. First we can put x_1 into the basis and take w_2 out:

η	=	-4	_	$(8/3)w_2$	+	$(2/3)x_3$	—	$(10/3)w_1$
x_2	=	1	+	$(1/3)w_2$	—	$(1/3)x_3$	+	$(2/3)w_1$
x_1	=	1	_	$(1/3)w_2$	_	$(2/3)x_3$	+	$(1/3)w_1$

Then x_3 in and x_1 out:

η	=	-3	—	$3w_2$	—	x_1	—	$3w_1$
x_2	=	(1/2)	+	$(1/2)w_2$	+	$(1/2)x_1$	+	$(1/2)w_1$
x_3	=	(3/2)	—	$(1/2)w_2$	—	$(1/2)x_1$	+	$(1/2)w_1$

Thus the solution is $x_1 = 0$, $x_2 = 1/2$, $x_3 = 3/2$ with $\eta = -3$. We also have $w_1 = w_2 = 0$.

Exercise 2.4

Again we need to use the 2-phase method. The solution is $x_1 = 0, x_2 = 1, x_3 = 0.$

Exercise 2.9

Here, we multiply the first constraint by -1 to reverse the inequality:

maximize
$$2x_1 + 3x_2 + 4x_3$$

subject to $2x_1 + 3x_2 \le 5$,
 $x_1 + x_2 + 2x_3 \le 4$,
 $x_1 + 2x_2 + 3x_3 \le 7$,
 $x_1, x_2, x_3 \ge 0$.

The solution is $x_1 = 3/2$, $x_2 = 5/2$, $x_3 = 0$ and $\eta = 21/2$.

Exercise 2.10

Here, we replace the equality constraint by two inequalities:

maximize
$$6x_1 + 8x_2 + 5x_3 + 9x_4$$

subject to $x_1 + x_2 + x_3 + x_4 \leq 1,$
 $-x_1 - x_2 - x_3 - x_4 \leq -1,$
 $x_1, x_2, x_3, x_4 \geq 0.$

Here, we need the 2-phase method. We solve the auxiliary problem:

maximize
$$-x_0$$

subject to $x_1 + x_2 + x_3 + x_4 - x_0 \leq 1,$
 $-x_1 - x_2 - x_3 - x_4 - x_0 \leq -1,$
 $x_0, x_1, x_2, x_3, x_4 \geq 0.$

We introduce two slack variables and the initial dictionary is

 η	=										—	x_0
w_1	=	1	—	x_1	—	x_2	_	x_3	_	x_4	+	x_0
w_2	=	-1	+	x_1	+	x_2	+	x_3	+	x_4	+	x_0

Then x_0 enters and w_2 leaves:

η	=	-1	+	x_1	+	x_2	+	x_3	+	x_4	—	w_2
w_1	=	2	—	$2x_1$	_	$2x_1$	—	$2x_1$	—	$2x_1$	+	w_2
x_0	=	1	—	x_1	—	x_2	—	x_3	—	x_4	+	w_2

We now have a feasible dictionary for the Phase I problem. η has the value -1. We hope to increase this to 0. We can let x_1 enter. We can also let x_0 leave (since this might give us the optimal solution to Phase I):

And sure enough, this is the optimal solution to Phase I and since we now have $\eta = 0$, this gives us a feasible solution to the original problem. We throw away the x_0 terms and we express the original objective function in terms of the current non-basic variables, which are x_1, x_2, x_3, w_2 :

$$\eta = 6x_1 + 8x_2 + 5x_3 + 9x_4$$

= 6(1 - x₂ - x₃ - x₄ + w₂) + 8x₂ + 5x₃ + 9x₄
= 6 + 2x₂ - x₃ + 3x₄ + 6w₂.

Then a feasible dictionary for Phase II is

Note that this dictionary is degenerate since the basic variable w_1 has the value 0. So, if we put w_2 into the basis, we take w_1 out and the value of η will not change. We get:

The variable with the largest positive coefficient is now x_4 . So we now put x_4 in and take x_1 out:

We have reached the optimal solution: $x_1 = x_2 = x_3 = 0$, $x_4 = 1$, $\eta = 9$. We have $w_1 = 0$ since it is a non-basic variable, but we also have $w_2 = 0$ since the dictionary is degenerate (but optimal).