UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in MAT3100 - Linear optimization
Day of examination: 07 June 2024
Examination hours: 1500-1900
This exam paper consists of 6 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the exam paper is complete before you attempt to answer anything.

All 10 part questions will be weighted equally.

Problem 1 Simplex method

Consider the LP problem (P)

$$
\begin{array}{rr}
\operatorname{maximize} & x_{1}+2 x_{2} \\
\text { subject to } & 3 x_{1}+x_{2} \leq 9 \\
& -x_{1}+x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

1a

Use the simplex method to find an optimal solution and the corresponding objective value.
Answer: We introduce the slack variables $w_{1}=9-3 x_{1}-x_{2}$ and $w_{2}=$ $1+x_{1}-x_{2}$, and then the initial dictionary is

$$
\begin{array}{rlrl}
\eta & = & & x_{1}+2 x_{2} \\
\hline w_{1} & =9-3 x_{1}-x_{2} \\
w_{2} & =1+x_{1}-x_{2}
\end{array}
$$

We can let x_{2} go into the basis. When increasing x_{2}, we need $x_{2} \leq 9$ to keep $w_{1} \geq 0$, and $x_{2} \leq 1$ to keep $w_{2} \geq 0$, and so w_{2} leaves the basis. Then, we express

$$
x_{2}=1+x_{1}-w_{2},
$$

and with this substitution, the new dictionary is

$$
\begin{array}{r}
\eta \\
\eta
\end{array}+2+3 x_{1}-2 w_{2} .
$$

Now x_{1} goes into the basis, and w_{1} leaves, and with the substitution,

$$
x_{1}=2-\frac{1}{4} w_{1}+\frac{1}{4} w_{2},
$$

the new dictionary is

$$
\begin{array}{r}
\eta=8-(3 / 4) w_{1}-(5 / 4) w_{2} \\
\hline x_{1}=2-(1 / 4) w_{1}+(1 / 4) w_{2} \\
x_{2}=3-(1 / 4) w_{1}-(3 / 4) w_{2}
\end{array}
$$

This dictionary is optimal, and so an optimal solution is $x_{1}=2, x_{2}=3$ (and $w_{1}=w_{2}=0$) and the optimal objective value is $\eta=8$.

1b

Make a plot of the feasible region for (P) and indicate your optimal solution.

Answer:

1c

(i) Let $\left(\mathrm{P}^{\prime}\right)$ be the LP problem formed by adding the constraint, $x_{1}-2 x_{2} \leq 4$, to (P). What is the optimal objective value of $\left(\mathrm{P}^{\prime}\right)$?
(ii) Let $\left(\mathrm{P}^{\prime \prime}\right)$ be the LP problem formed by replacing the objective function of (P) by $x_{1}+3 x_{2}$. What is the optimal objective value of $\left(\mathrm{P}^{\prime \prime}\right)$?

Answer: (i) Since the set of points

$$
\left\{\left(x_{1}, x_{2}\right): x_{1}-2 x_{2} \leq 4\right\}
$$

contains the feasible region, the point $\left(x_{1}, x_{2}\right)=(2,3)$ is also an optimal solution for $\left(\mathrm{P}^{\prime}\right)$ and the optimal objective value of $\left(\mathrm{P}^{\prime}\right)$ is the same as that of (P), i.e., $\eta=8$.
(ii) we can represent the new objective function η^{\prime} in terms of w_{1} and w_{2} :

$$
\begin{aligned}
\eta^{\prime} & =x_{1}+3 x_{2} \\
& =\left(2-\frac{1}{4} w_{1}+\frac{1}{4} w_{2}\right)+3\left(3-\frac{1}{4} w_{1}-\frac{3}{4} w_{2}\right) \\
& =11-w_{1}-2 w_{2},
\end{aligned}
$$

and this is the new top line of the dictionary. The coefficients of w_{1} and w_{2} are again negative and so the new dictionary is optimal. The solution is $\left(x_{1}, x_{2}\right)=(2,3)$ as before and the new objective value is $\eta^{\prime}=11$.

1d

What is the dual problem (D) of (P)?
Answer:

$$
\begin{array}{rc}
\operatorname{minimize} & 9 y_{1}+y_{2} \\
\text { subject to } & 3 y_{1}-y_{2} \\
& y_{1}+y_{2} \\
& y_{1}, y_{2}
\end{array} \geq 0,0 .
$$

1e

What is an optimal solution to (D) and what is the corresponding optimal value?

Answer: The dual variables $\left(y_{1}, y_{2}\right)$ correspond to the slack variables $\left(w_{1}, w_{2}\right)$ and the dual slack variables $\left(z_{1}, z_{2}\right)$ correspond to the primal variables $\left(x_{1}, x_{2}\right)$. Using the negative-transpose property of the simplex method, the dual dictionary corresponding to the optimal primal dictionary is

$$
\left.\begin{array}{rrrrrr}
-\zeta & = & -8 & - & 2 z_{1} & - \\
\hline y_{1} & = & 3 / 4 & + & (1 / 4) z_{2} \\
y_{2} & = & 5 / 4 & - & (1 / 4) z_{1} & + \\
\hline
\end{array}(3 / 4) z_{2}\right)
$$

This dictionary is also optimal, and the optimal dual solution is $z_{1}=z_{2}=0$ and $y_{1}=3 / 4$ and $y_{2}=5 / 4$, and the optimal objective value is again 8 .

Problem 2 Standard form

Convert the LP problem

$$
\begin{array}{rllll}
\operatorname{minimize} & 3 x_{1} & -4 x_{2} & -2 x_{3} & \\
\text { subject to } & -x_{1}+2 x_{2} & +3 x_{3} & \geq 2, \\
& 2 x_{1} & -x_{2} & =5, \\
& x_{1}, x_{3} \geq 0 &
\end{array}
$$

into standard form (the form suitable for the simplex algorithm). Note that $x_{2} \in \mathbb{R}$ is a free variable. What form of the simplex algorithm will be required to solve it? (do not try to solve it).

Answer: We can convert the problem as follows:

$$
\begin{array}{rcccl}
\operatorname{maximize} & -3 x_{1} & +4 x_{2} & +2 x_{3} & \\
\text { subject to } & x_{1} & -2 x_{2} & -3 x_{3} & \leq-2, \\
& 2 x_{1} & -x_{2} & & \leq 5, \\
& -2 x_{1} & +x_{2} & \leq-5,
\end{array}
$$

To deal with the free variable x_{2} we let $x_{2}=y-z$ for $y, z \geq 0$. Then the standard form is

$$
\begin{array}{rccccl}
\operatorname{maximize} & -3 x_{1} & +4 y & -4 z & +2 x_{3} & \\
\text { subject to } & x_{1} & -2 y & +2 z & -3 x_{3} & \leq-2, \\
& 2 x_{1} & -y & +z & & \leq 5, \\
& -2 x_{1} & +y & -z & \leq-5,
\end{array}
$$

The 2-phase simplex method will be required because the right hand side is not non-negative.

Problem 3 Convexity

3a

Recall that a polytope P is the convex hull of a finite set of points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{t} \in$ \mathbb{R}^{n}. Show that P is convex.
Answer: Let $\mathbf{x}, \mathbf{y} \in P$ and let $\lambda \in[0,1]$. Then we need to show that $(1-\lambda) \mathbf{x}+\lambda \mathbf{y} \in P$. By definition,

$$
\mathbf{x}=\sum_{i=1}^{t} \mu_{i} \mathbf{x}_{i}, \quad \mathbf{y}=\sum_{i=1}^{t} \nu_{i} \mathbf{x}_{i},
$$

for $\mu_{i}, \nu_{i} \geq 0$ and $\sum_{i=1}^{t} \mu_{i}=\sum_{i=1}^{t} \nu_{i}=1$. Then

$$
\begin{aligned}
(1-\lambda) \mathbf{x}+\lambda \mathbf{y} & =(1-\lambda) \sum_{i=1}^{t} \mu_{i} \mathbf{x}_{i}+\lambda \sum_{i=1}^{t} \nu_{i} \mathbf{x}_{i} \\
& =\sum_{i=1}^{t}\left((1-\lambda) \mu_{i}+\lambda \nu_{i}\right) \mathbf{x}_{i} .
\end{aligned}
$$

Since

$$
(1-\lambda) \mu_{i}+\lambda \nu_{i} \geq 0,
$$

and since

$$
\sum_{i=1}^{t}\left((1-\lambda) \mu_{i}+\lambda \nu_{i}\right)=(1-\lambda) \sum_{i=1}^{t} \mu_{i}+\lambda \sum_{i=1}^{t} \nu_{i}=(1-\lambda)+\lambda=1,
$$

it follows that $(1-\lambda) \mathbf{x}+\lambda \mathbf{y} \in P$.
(Continued on page 5.)

3b

Let A_{1} and A_{2} be $m \times n$ matrices and let \mathbf{b}_{1} and \mathbf{b}_{2} be vectors in \mathbb{R}^{m}. Show that the set

$$
S:=\left\{\mathbf{x} \in \mathbb{R}^{n}: A_{1} \mathbf{x} \leq \mathbf{b}_{1}, A_{2} \mathbf{x}=\mathbf{b}_{2}\right\}
$$

is convex (if it is non-empty).
Answer: Let $\mathbf{x}, \mathbf{y} \in S$ and let $\lambda \in[0,1]$. Then we need to show that $\mathbf{z}:=(1-\lambda) \mathbf{x}+\lambda \mathbf{y} \in S$. By the linearity of matrix multiplication,

$$
A_{1} \mathbf{z}=(1-\lambda) A_{1} \mathbf{x}+\lambda A_{1} \mathbf{y} \leq(1-\lambda) \mathbf{b}_{1}+\lambda \mathbf{b}_{1}=\mathbf{b}_{1},
$$

and

$$
A_{2} \mathbf{z}=(1-\lambda) A_{2} \mathbf{x}+\lambda A_{2} \mathbf{y}=(1-\lambda) \mathbf{b}_{2}+\lambda \mathbf{b}_{2}=\mathbf{b}_{2},
$$

and therefore $\mathbf{z} \in S$.

Problem 4 Network flow

Consider the minimum cost network flow problem based on the directed graph shown in the figure. The number associated with each directed edge

(i, j) is its cost per unit flow, $c_{i, j}$, and the the number associated with each node i is its supply, b_{i}.

4a

Let T_{1} be the spanning tree formed by the edges $(a, c),(c, b),(d, b)$, shown in bold in the figure. Compute the tree solution x corresponding to T_{1}.

Answer: The flow balance equation at node i is

$$
\sum_{j:(i, j) \in E} x_{i j}-\sum_{k:(k, i) \in E} x_{k i}=b_{i} .
$$

By 'tree solution' we mean that there is zero flow on edges not in T_{1}, i.e.,

$$
x_{b a}=x_{c d}=x_{a d}=0 .
$$

We use leaf elimination to find the $x_{i j}$ in T_{1} :

- flow balance at a gives $x_{a c}=3$,
- flow balance at c gives $x_{c b}-x_{a c}=-2$, and so $x_{c b}=1$,
- flow balance at b gives $-x_{c b}-x_{d b}=-5$, and so $x_{d b}=4$.

4b

Use the network simplex method to find an optimal solution and optimal value for the flow problem.

Answer: x above is non-negative and therefore a feasible solution. We compute the dual variables using $y_{j}=y_{i}+c_{i j}$ for each edge (i, j) in T_{1}. Use node a as the root and set $y_{a}=0$. Then

$$
y_{c}=2, \quad y_{b}=6, \quad y_{d}=5 .
$$

We now compute the dual slacks $z_{i j}=c_{i j}-\left(y_{j}-y_{i}\right)$ on the edges (i, j) not in T_{1} :

$$
z_{b a}=9, \quad z_{c d}=-1, \quad z_{a d}=1 .
$$

Since $z_{c d}$ is negative, x is not an optimal solution. So, we pivot. We take $x_{c d}$ into the basis. If we increase $x_{c d}$ from 0 to ϵ, we obtain a loop of edges (c, d), $(d, b),(c, b)$ with changed flow. The flows on these edges change to

$$
x_{c d}=\epsilon, \quad x_{d b}=4+\epsilon, \quad x_{c b}=1-\epsilon,
$$

while the other flows are unchanged. The maximum allowed increase in $x_{c d}$ is therefore $\epsilon=1$, and this makes $x_{c b}=0$, and so $x_{c b}$ leaves the basis. This gives us a new spanning tree T_{2} with edges $(a, c),(c, d),(d, b)$, and the new tree solution x is given by

$$
x_{b a}=x_{c b}=x_{a d}=0 .
$$

and

$$
x_{a c}=3, \quad x_{c d}=1, \quad x_{d b}=5 .
$$

The dual variables, with $y_{a}=0$, are now

$$
y_{c}=2, \quad y_{b}=5, \quad y_{d}=4,
$$

and then

$$
z_{b a}=8, \quad z_{c b}=1, \quad z_{a d}=2 .
$$

The $z_{i j}$ are now all non-negative and so x is an optimal solution. The optimal objective value (minimum cost) is

$$
\sum_{(i, j) \in T_{2}} c_{i j} x_{i j}=c_{a c} x_{a c}+c_{c d} x_{c d}+c_{d b} x_{d b}=2 \times 3+2 \times 1+1 \times 5=13 .
$$

Good luck!

