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1 Non-linear least squares

A minimization problem that occurs frequently is the minimization of a func-
tion of the form

f(x) =
1

2

m
∑

i=1

ri(x)
2, (1)

where x ∈ R
n and ri : R

n → R, i = 1, . . . ,m. Such a minimization problem
comes from curve fitting by least squares, where the ri are the residuals.

1.1 Linear case

Suppose we are given data (tj, yj), j = 1, . . . ,m, and we want to fit a straight
line,

p(t) = x1 + x2t.

Then we would like to find x1 and x2 that minimize

1

2

m
∑

i=1

(yi − p(ti))
2 =

1

2

m
∑

i=1

(yi − x1 − x2ti)
2.

This problem can be formulated as (1) with n = 2 where the residuals are

ri(x) = ri(x1, x2) = yi − p(ti) = yi − x1 − x2ti.
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More generally, we could fit a polynomial

p(t) =
n

∑

j=1

xjt
j−1,

or even a linear combination of basis functions φ1(t), . . . , φn(t),

p(t) =
n

∑

j=1

xjφj(t).

These are again examples of (1), where

ri(x) = ri(x1, . . . , xn) = yi − p(ti).

In all these cases, the problem is linear in the sense that the solution is
found by solving a linear system of equations. This is because f is quadratic
in x. We can express f as

f(x) =
1

2
‖Ax− b‖2,

where A ∈ R
m,n is the Vandermonde matrix

A =











φ1(t1) φ2(t1) · · · φn(t1)
φ1(t2) φ2(t2) · · · φn(t2)

...
...

...
φ1(tm) φ2(tm) · · · φn(tm)











,

x = [x1, x2, . . . , xn]
T is the vector of coefficients of p, and b = [y1, y2, . . . , ym]

T

is the vector of data observations.
We have seen that we can then find x from the QR decomposition of A

or from the normal equations, for example.

1.2 Non-linear case

It might be more appropriate to fit a curve p(t) that does not depend linearly
on its parameters x1, . . . , xn. An example of this is the rational function

p(t) =
x1t

x2 + t
.
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Another is the exponential function

p(t) = x1e
x2t.

In both cases we would again like to find x1 and x2 to minimize

1

2

m
∑

i=1

(yi − p(ti))
2.

As for the linear case we can reformulate this as the minimization of f in (1)
with the residuals

ri(x) = ri(x1, x2) = yi − p(ti).

In these cases the problem is non-linear since f is no longer a quadratic
function (the residuals are no longer linear in the parameters x1, . . . , xn). One
approach to minimizing such an f is to try Newton’s method. Recall that
Newton’s method for minimizing f is simply Newton’s method for solving
the system of n equations, ∇f(x) = 0, which is the iteration

x(k+1) = x(k) − (∇2f(x(k)))−1∇f(x(k)). (2)

The advantages of Newton’s method are:

1. If f is quadratic, it converges in one step, i.e., x(1) is the global minimum
of f for any initial guess x(0).

2. For non-linear least squares it converges quadratically to a local mini-
mum if the initial guess x(0) is close enough.

The disadvantage of Newton’s method is its lack of robustness. For non-
linear least squares it might not converge. One reason for this is that the
search direction

d(k) = −(∇2f(x(k)))−1∇f(x(k))

might not even be a descent direction: there is no guarantee that it fulfills
the descent condition,

∇f(x(k)))Td(k) < 0.

One way to improve robustness is to use the Gauss-Newton method in-
stead. The Gauss-Newton method is also simpler to implement.
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2 Gauss-Newton method

The Gauss-Newton method is a simplification or approximation of the New-
ton method that applies to functions f of the form (1). Differentiating (1)
with respect to xj gives

∂f

∂xj

=
m
∑

i=1

∂ri

∂xj

ri,

and so the gradient of f is
∇f = JT

r r,

where r = [r1, . . . , rm]
T and Jr ∈ R

m,n is the Jacobian of r,

Jr =

[

∂ri

∂xj

]

i=1,...,m,j=1,...,n

.

Differentiating again, with respect to xk, gives

∂2f

∂xj∂xk

=
m
∑

i=1

(

∂ri

∂xj

∂ri

∂xk

+ ri
∂2ri

∂xj∂xk

)

,

and so the Hessian of f is

∇2f = JT
r Jr +Q,

where

Q =
m
∑

i=1

ri∇
2ri.

The Gauss-Newton method is the result of neglecting the termQ, i.e., making
the approximation

∇2f ≈ JT
r Jr. (3)

Thus the Gauss-Newton iteration is

x(k+1) = x(k) − (Jr(x
(k))TJr(x

(k)))−1Jr(x
(k))T r(x(k)).

In general the Gauss-Newton method will not converge quadratically but
if the elements of Q are small as we approach a minimum, we can expect
fast convergence. This will be the case if either the ri or their second order
partial derivatives

∂2ri

∂xj∂xk
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are small as we approach a minimum.
An advantage of this method is that it does not require computing the

second order partial derivatives of the functions ri. Another is that the search
direction, i.e.,

d(k) = −(Jr(x
(k))TJr(x

(k)))−1∇f(x(k)),

is always a descent direction (as long as Jr(x
(k)) has full rank). This is

because JT
r Jr is positive semi-definite, which implies that (JT

r Jr)
−1 is also

positive semi-definite, which means that

∇f(x(k)))Td(k) = −∇f(x(k)))T (Jr(x
(k))TJr(x

(k)))−1∇f(x(k)) ≤ 0.

If Jr(x
(k)) has full rank this inequality is strict. This suggests that the Gauss-

Newton method will typically be more robust than Newton’s method.
There is still no guarantee, however, that the Gauss-Newton method will

converge in general. In pratice, one would want to incorporate a step length
α(k) into the iteration:

x(k+1) = x(k) + α(k)d(k),

using some rule like the Armijo rule, in order to ensure descent at each
iteration.

3 Example

In a biology experiment studying the relation between substrate concentra-
tion [S] and reaction rate in an enzyme-mediated reaction, the data in the
following table were obtained.

i 1 2 3 4 5 6 7

[S] 0.038 0.194 0.425 0.626 1.253 2.500 3.740
rate 0.050 0.127 0.094 0.2122 0.2729 0.2665 0.3317

It is desired to find a curve (model function) of the form

rate =
Vmax[S]

KM + [S]

that best fits the data in the least-squares sense, with the parameters Vmax

and KM to be determined.
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Figure 1: Curve model

We can rewrite this problem as finding x1 and x2 such that

p(t) =
x1t

x2 + t

best fits the data (ti, yi), i = 1, 2, . . . , 7, of the table where ti is the i-th
concentration [S] and yi is the i-th rate. We will find x1 and x2 that minimize
the sum of squares of the residuals

ri = yi −
x1ti

x2 + ti
, i = 1, . . . , 7.

The Jacobian Jr of the vector of residuals ri with respect to the unknowns
x1 and x2 is a 7× 2 matrix with the i-th row having the entries

∂ri

∂x1

= −
ti

x2 + t
,

∂ri

∂x2

=
x1ti

(x2 + t)2
.

Starting with the initial estimates of x1 = 0.9 and x2 = 0.2, and using
the stopping criterion

‖∇f‖2 ≤ 10−15, (4)

the method converges in 14 iterations, yielding the solution x1 = 0.3618,
x2 = 0.5563. The sum of squares of residuals decreased from the initial value
of 1.445 to 0.0078. The plot in Figure 1 shows the curve determined by the
model for the optimal parameters with the observed data.

We can alternatively try the (full) Newton method. We then also need
the second order partial derivatives,

∂2ri

∂x2
1

= 0,
∂2ri

∂x1∂x2

=
ti

(x2 + ti)2
,

∂2ri

∂x2
2

=
−2x1ti

(x2 + ti)3
.
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Starting with the same initial estimates of x1 = 0.9 and x2 = 0.2, New-
ton’s method does not converge. However, if we change the initial estimates
to x1 = 0.4 and x2 = 0.6 we find that both the Gauss-Newton and New-
ton methods converge. Moreover, using again the stopping criterion of (4),
the Gauss-Newton method needs 11 iterations while Newton’s method needs
only 5.
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