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Let

I(f) =

∫ 1

−1

f(x)dx and In(f) =

n∑
i=1

wif(xi).

Recall that with Gauss quadrature, we find weights {wi}3i=1 and abscissae {xi}ni=1, such that

I[p] = In[p] for all p ∈ P2n−1[−1, 1], (1)

i.e., the quadrature rule is exact for polynomials of degree (at most) 2n− 1.
In this exercise we consider n = 3, and fix one of the abscissae x3 = −1, so that it equals one of the

end points. Since we have fixed one of the abscissae, we no longer have full freedom in our choice of xi,
and we can not expect (1) to hold. Instead we will try to design a rule, such that

I[p] = w1p(x1) + w2p(x2) + w3p(−1) for all p ∈ P2n−2[−1, 1]. (2)

That is, the quadrature rule should only be exact for polynomials of degree at most 2n− 2.
Step 1. Observe that every p ∈ P2n−2 can be written as

p(x) = (x− (−1))q(x) + r(x)

where q ∈ P2n−3 and r ∈ P0. Moreover, we see that p(−1) = r(−1), and that this uniquely determines
r. This gives ∫ 1

−1

p(x)dx =

∫ 1

−1

(x− (−1))q(x)dx+

∫ 1

−1

r(x)dx

=

∫ 1

−1

q(x)w̃(x)dx+ p(−1)

∫ 1

−1

1dx

=

∫ 1

−1

q(x)w̃(x)dx+ 2p(−1)

(3)

where w̃(x) = (x− (−1)), is a non-negative weight function, and we use that r(x) = p(−1) is constant.
Our next goal is the design a Gauss quadrature rule, for the weighted integral∫ 1

−1

f(x)w̃(x)dx.

so that this is exact for polynomials of degree 2(n− 1)− 1 = 2n− 3 = 3. We will do this in several steps.
Step 2. We start by finding a polynomial of degree n−1 = 2, which is orthogonal to all polynomials

of degree less than n− 1, with respect to the inner-product

〈f, g〉 =

∫ 1

−1

f(x)g(x)w̃(x)dx.

We start by determining the coefficients α, c0 and c1, such that {1, x + α, x2 + c1x + c0} becomes an
orthogonal basis for P2, with the given inner-product. We have

〈1, x+ α〉 =

∫ 1

−1

(x+ α)(x+ 1)dx = 0 =⇒ α = −1

3
.

This gives the two equations〈
1, x2 + c1x+ c0

〉
=

∫ 1

−1

(x2 + c1x+ c0)(x+ 1)dx =
2(1 + c1)

3
+ 2c0 = 0

〈
x− 1

3 , x
2 + c1x+ c0

〉
=

∫ 1

−1

(x− 1
3 )(x2 + c1x+ c0)(x+ 1)dx =

2

5
+

2

3
(c1 + c0 − 1

3 (1 + c0))− 2
3c0 = 0

1



We rewrite this as the system

8 + 20c1 = 0
4
3 + 7

3c0 + c1 = 0,

with solution c0 = − 1
5 and c1 = − 2

5 . This means that the polynomial x2 − 2
5x −

1
5 is orthogonal to all

polynomials of degree 0 and 1, w.r.t. 〈·, ·〉.
Step 3. The roots of the polynomial x2 − 2

5x−
1
5 are

x =

2
5 ±

√
4
25 + 4

5

2
=

1

5
(1±

√
6)

and we denote them by x1 = 1
5 (1−

√
6) and x2 = 1

5 (1 +
√

6). We will use these as our abscissae in the
Gauss quadrature rule for polynomials in P2(n−1)−1.

Step 4. The weights for the quadrature rule for
∫ 1

−1
q(x)w̃(x)dx, are then computed as (see p. 139

in book)

w̃1 =

∫ 1

−1

x− x2
x1 − x2

(x− (−1))dx = 1− 2

3
√

6

w̃2 =

∫ 1

−1

x− x1
x2 − x1

(x− (−1))dx = 1 +
2

3
√

6

Step 5 (Conclusion). We now have that∫ 1

−1

s(x)w̃(x)dx = w̃1s(x1) + w̃2s(x2) for all s ∈ P2(n−1)−1.

Using that q ∈ P2(n−1)−1 in (3), and that

q(xi) =
p(xi)− p(−1)

xi − (−1)

we get∫ 1

−1

p(x)dx = w̃1q(x1) + w̃2q(x2) + 2p(−1)

= w̃1
p(x1)− p(−1)
1
5 (1−

√
6) + 1

+ w̃2
p(x2)− p(−1)
1
5 (1 +

√
6) + 1

+ 2p(−1)

=
w̃1

1
5 (1−

√
6) + 1

p(x1) +
w̃2

1
5 (1 +

√
6) + 1

p(x2) +

(
−w̃1

1
5 (1−

√
6) + 1

+
−w̃2

1
5 (1 +

√
6) + 1

+ 2

)
p(−1)

as desired.
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