Gauss-Radau, with $n = 3$, $w = 1$ and $[-1, 1]$

November 22, 2020

Let

$$
I(f) = \int_{-1}^{1} f(x) dx
$$
 and $I_n(f) = \sum_{i=1}^{n} w_i f(x_i).$

Recall that with Gauss quadrature, we find weights $\{w_i\}_{i=1}^3$ and abscissae $\{x_i\}_{i=1}^n$, such that

$$
I[p] = I_n[p] \text{ for all } p \in \mathbb{P}_{2n-1}[-1,1],
$$
 (1)

i.e., the quadrature rule is exact for polynomials of degree (at most) $2n - 1$.

In this exercise we consider $n = 3$, and fix one of the abscissae $x_3 = -1$, so that it equals one of the end points. Since we have fixed one of the abscissae, we no longer have full freedom in our choice of x_i , and we can not expect [\(1\)](#page-0-0) to hold. Instead we will try to design a rule, such that

$$
I[p] = w_1 p(x_1) + w_2 p(x_2) + w_3 p(-1) \quad \text{for all} \quad p \in \mathbb{P}_{2n-2}[-1, 1].
$$
 (2)

That is, the quadrature rule should only be exact for polynomials of degree at most $2n-2$.

Step 1. Observe that every $p \in \mathbb{P}_{2n-2}$ can be written as

$$
p(x) = (x - (-1))q(x) + r(x)
$$

where $q \in \mathbb{P}_{2n-3}$ and $r \in \mathbb{P}_0$. Moreover, we see that $p(-1) = r(-1)$, and that this uniquely determines r. This gives

$$
\int_{-1}^{1} p(x)dx = \int_{-1}^{1} (x - (-1))q(x)dx + \int_{-1}^{1} r(x)dx
$$

=
$$
\int_{-1}^{1} q(x)\tilde{w}(x)dx + p(-1)\int_{-1}^{1} 1dx
$$

=
$$
\int_{-1}^{1} q(x)\tilde{w}(x)dx + 2p(-1)
$$
 (3)

.

where $\tilde{w}(x) = (x - (-1))$, is a non-negative weight function, and we use that $r(x) = p(-1)$ is constant. Our next goal is the design a Gauss quadrature rule, for the weighted integral

$$
\int_{-1}^{1} f(x)\tilde{w}(x) \mathrm{d}x.
$$

so that this is exact for polynomials of degree $2(n-1)-1 = 2n-3 = 3$. We will do this in several steps.

Step 2. We start by finding a polynomial of degree $n-1=2$, which is orthogonal to all polynomials of degree less than $n - 1$, with respect to the inner-product

$$
\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)\tilde{w}(x) \mathrm{d}x.
$$

We start by determining the coefficients α , c_0 and c_1 , such that $\{1, x + \alpha, x^2 + c_1x + c_0\}$ becomes an orthogonal basis for \mathbb{P}_2 , with the given inner-product. We have

$$
\langle 1, x + \alpha \rangle = \int_{-1}^{1} (x + \alpha)(x + 1) \mathrm{d}x = 0 \implies \alpha = -\frac{1}{3}
$$

This gives the two equations

$$
\langle 1, x^2 + c_1 x + c_0 \rangle = \int_{-1}^1 (x^2 + c_1 x + c_0)(x+1) dx = \frac{2(1+c_1)}{3} + 2c_0 = 0
$$

$$
\langle x - \frac{1}{3}, x^2 + c_1 x + c_0 \rangle = \int_{-1}^1 (x - \frac{1}{3})(x^2 + c_1 x + c_0)(x+1) dx = \frac{2}{5} + \frac{2}{3}(c_1 + c_0 - \frac{1}{3}(1+c_0)) - \frac{2}{3}c_0 = 0
$$

We rewrite this as the system

$$
8 + 20c_1 = 0
$$

$$
\frac{4}{3} + \frac{7}{3}c_0 + c_1 = 0,
$$

with solution $c_0 = -\frac{1}{5}$ and $c_1 = -\frac{2}{5}$. This means that the polynomial $x^2 - \frac{2}{5}x - \frac{1}{5}$ is orthogonal to all polynomials of degree 0 and 1, w.r.t. $\langle \cdot, \cdot \rangle$.

Step 3. The roots of the polynomial $x^2 - \frac{2}{5}x - \frac{1}{5}$ are

$$
x = \frac{\frac{2}{5} \pm \sqrt{\frac{4}{25} + \frac{4}{5}}}{2} = \frac{1}{5} (1 \pm \sqrt{6})
$$

and we denote them by $x_1 = \frac{1}{5}(1 -$ √ $\overline{6}$) and $x_2 = \frac{1}{5}(1 + \sqrt{6})$. We will use these as our abscissae in the Gauss quadrature rule for polynomials in $\mathbb{P}_{2(n-1)-1}$.

Step 4. The weights for the quadrature rule for $\int_{-1}^{1} q(x)\tilde{w}(x)dx$, are then computed as (see p. 139) in book)

$$
\tilde{w}_1 = \int_{-1}^1 \frac{x - x_2}{x_1 - x_2} (x - (-1)) dx = 1 - \frac{2}{3\sqrt{6}}
$$

$$
\tilde{w}_2 = \int_{-1}^1 \frac{x - x_1}{x_2 - x_1} (x - (-1)) dx = 1 + \frac{2}{3\sqrt{6}}
$$

Step 5 (Conclusion). We now have that

$$
\int_{-1}^{1} s(x)\tilde{w}(x)dx = \tilde{w}_1s(x_1) + \tilde{w}_2s(x_2) \text{ for all } s \in \mathbb{P}_{2(n-1)-1}.
$$

Using that $q \in \mathbb{P}_{2(n-1)-1}$ in [\(3\)](#page-0-1), and that

$$
q(x_i) = \frac{p(x_i) - p(-1)}{x_i - (-1)}
$$

we get

$$
\int_{-1}^{1} p(x)dx = \tilde{w}_1 q(x_1) + \tilde{w}_2 q(x_2) + 2p(-1)
$$

= $\tilde{w}_1 \frac{p(x_1) - p(-1)}{\frac{1}{5}(1 - \sqrt{6}) + 1} + \tilde{w}_2 \frac{p(x_2) - p(-1)}{\frac{1}{5}(1 + \sqrt{6}) + 1} + 2p(-1)$
= $\frac{\tilde{w}_1}{\frac{1}{5}(1 - \sqrt{6}) + 1} p(x_1) + \frac{\tilde{w}_2}{\frac{1}{5}(1 + \sqrt{6}) + 1} p(x_2) + \left(\frac{-\tilde{w}_1}{\frac{1}{5}(1 - \sqrt{6}) + 1} + \frac{-\tilde{w}_2}{\frac{1}{5}(1 + \sqrt{6}) + 1} + 2\right) p(-1)$

as desired.