Gauss-Radau, with n = 3, w =1 and [—1, 1]

November 22, 2020

Let

1) = [ sade and 1,00 =Y wis (),

Recall that with Gauss quadrature, we find weights {w;}?_, and abscissae {z;}"_;, such that
Ilp] = L,[p] forall pePy,_1[-1,1], (1)

i.e., the quadrature rule is exact for polynomials of degree (at most) 2n — 1.

In this exercise we consider n = 3, and fix one of the abscissae x3 = —1, so that it equals one of the
end points. Since we have fixed one of the abscissae, we no longer have full freedom in our choice of z;,
and we can not expect (1) to hold. Instead we will try to design a rule, such that

I[p] = wip(x1) + wep(x2) + w3p(—1) for all p € Py,_o[—1,1]. (2)

That is, the quadrature rule should only be exact for polynomials of degree at most 2n — 2.
Step 1. Observe that every p € Py, _o can be written as

p(z) = (z = (=1))q(x) + r(z)

where ¢ € Py,,_3 and r € Py. Moreover, we see that p(—1) = r(—1), and that this uniquely determines
r. This gives

/1 p(z)de = /1 (@ — (—1))q(z)da + /1 r(z)dz

-1 —1 —1

_ /_1 q(a:)u?(x)dx—i—p(—l)/l 1dz (3)
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where w(x) = (x — (—1)), is a non-negative weight function, and we use that r(x) = p(—1) is constant.
Our next goal is the design a Gauss quadrature rule, for the weighted integral

[ 11 f(a)d(z)dz.

so that this is exact for polynomials of degree 2(n—1) —1 = 2n — 3 = 3. We will do this in several steps.
Step 2. We start by finding a polynomial of degree n — 1 = 2, which is orthogonal to all polynomials
of degree less than n — 1, with respect to the inner-product

(f,9) Z/_lf(as)g(ﬂc)zb(x)dx.

We start by determining the coefficients «, ¢y and c;, such that {1,z + o, 2? + c1x + ¢} becomes an
orthogonal basis for Py, with the given inner-product. We have

<1,x+a>/11(x+a)(x+1)dz0 = a:f%.

This gives the two equations

1
2(1
<1,x2+clx+co>=/ (x2+clx+co)(x+1)dx:%—&—2%:0
-1
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2
(z—L 2% +aztc) = /_1(55 - D@ +az+c)(z+ 1)de = 5 + (1 +c—35(1+c) —2c0=0
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We rewrite this as the system

8420c; =0
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with solution ¢y = —% and ¢; = —%. This means that the polynomial 22 — %x — % is orthogonal to all
polynomials of degree 0 and 1, w.r.t. {-,-).
Step 3. The roots of the polynomial z? — %x — % are
2 4 4 4
e 1
v = % = -(1£V6)

and we denote them by z; = (1 — v/6) and 3 = L(1+ v/6). We will use these as our abscissae in the
Gauss quadrature rule for polynomials in Py, _1)_1.

Step 4. The weights for the quadrature rule for f_ll q(x)w(x)dz, are then computed as (see p. 139
in book)

mlz/ TTL2 (L)) =1 —2

1 T1 — T2 3v6

! Tr— T 2
Wy = z—(—1)de=1+—=
? /_112*%( ( )) 36

Step 5 (Conclusion). We now have that

1
/ s(x)w(x)dr = wis(wy) + wWes(wz) for all s € Por—1)—1.
-1

Using that ¢ € Py(,—1)—1 in (3), and that

p(z;) — p(=1)

=L

we get

1
/ p(z)dr = wiq(w1) + Waq(ws) + 2p(—1)

—1wy —1Ws

:Wp(wl)+wp(x2)+<é(l\/6)+1+é(1+\/6)+1+2>p(_1)

as desired.



