$$B = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 6, & 6_2 \end{pmatrix}$$

where $6 \in \mathbb{R}^2$ are the columns

of B.

Let
$$u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \in \mathbb{R}^2$$

From sec 2.8 in the book we have that

and $u_1 = (U_1)_1 + ||U_1||$ = $1 + \sqrt{||V_1||^2} = 1 + \sqrt{5}$

and $H = I - 2uu^T$

of u, we know that R is an upper triangulor matrix.

Let Q = H^T, Then

B = H^TR = QR is a QR

Jackerization of B.

Mm

Likewise we now consider $A = \begin{pmatrix} 0 & 2 \\ 1 & 3 \end{pmatrix} = (a_1 \ a_2),$

ai ER² are columns of A.

Let $u = \begin{pmatrix} \alpha_1 \\ u_2 \end{pmatrix} \in \mathbb{R}^2$.

We have that $u_2 = (a_i)_2 = 1$

u, =(a,), + |a,|= 1

H=
$$T - \frac{2uu^{T}}{u^{T}u} = T - \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 7 \\ -1 & 0 \end{pmatrix}$$

HA=R where R is upper triangula

The HR is a QR backerization of A.

In this solution draft I hove not gone through all the theory for why these compatations work. It is recomended to read Sec. 2.8 to get a be fler understanding.