
MAT3110 FALL 2023 Oblig 2

Hand in deadline

Thursday October 26, 2023, 14:30, uploaded to Canvas.

Instructions

You can choose between scanning handwritten notes or typing the solution directly on
a computer (for instance with LATEX). The assignment must be submitted as a
single PDF file. Scanned pages must be clearly legible. The submission must contain
your name, course and assignment number.

It is expected that you give a clear presentation with all the necessary explanations.
Remember to include all relevant plots and figures. All aids, including collaboration, are
allowed, but the submission must be written by you and reflect your understanding of
the subject. In exercises where you are asked to write a computer program, you need
to hand in the code along with the rest of the assignment. (Add the code to the single
pdf.) You can use your programming language of choice.

There is only one attempt to pass the assignment and you must have a
score of at least 60% to pass it.

Application for postponement

If you need to apply for a postponement of the submission deadline due to illness or
other reasons, you have to contact the Student Administration at the Department of
Mathematics (e-mail:studieinfo@math.uio.no) well before the deadline.

Both mandatory assignments in this course must be approved in the same semester
before you are allowed to take the final examination.

Complete guidelines on compulsory assignments

For further details on the hand in of compulsory assignments, see:
https://www.uio.no/english/studies/examinations/compulsory-activities/mn-math-mandatory.

html

studieinfo@math.uio.no
https://www.uio.no/english/studies/examinations/compulsory-activities/mn-math-mandatory.html
https://www.uio.no/english/studies/examinations/compulsory-activities/mn-math-mandatory.html


Problems

Problem 1.

Consider the matrix

A =

 5 1/
√
2 −1/

√
2

1/
√
2 5/2 7/2

−1/
√
2 7/2 5/2


a) Find a Householder transformation H such that B = HAHT is a tridiagonal

matrix. This involves some bookkeeping, so it may help to use the aid of a computer
for calculating the linear algebra in steps that you describe.

b) Use Gershgorin’s second theorem in combination with a similarity transformation
to estimate the spectrum of A. Show that all eigenvalues are distinct and describe
the location of the eigenvalues as accurately as you can.

Hint: The matrix

Tα =

1 0 0
0 α 0
0 0 1


combined with B for a suitable α > 0 may be helpful.

c) Computer exercise: Approximate the largest eigenvalue of A using power iteration
and approximate the other two eigenvalues with inverse iteration (a shift is needed
for the middle eigenvalue). Draw a random vector x(0) as start vector (for instance,
with the components being independent, standard normal distributed). Include
your implementation code and the output of 10 iterations for each approximation.

Problem 2

Problem introduction (1 page)

Curve-fitting least squares problems are either linear or nonlinear, depending on the
class of functions one seeks to fit over. To motivate a numerical method for solving such
nonlinear problems, let us first describe a linear least squares problem for curve fitting.

Let f(x;β) = β1+β2x+β2x
2 where β ∈ R3 are unknown coefficients that we seek to

fit to m ≥ 3 measurements b1, . . . , bm so that the following holds as least squares sense

f(xi;β) = bi i = 1, 2, . . .m. (1)

The least squares problem is in other words to find a β ∈ R3 that minimizes

S(β) =

m∑
i=1

(ri(β))
2, (2)

where ri(β) = f(xi;β) − bi denotes the residual for the i-th equation. This is a linear
least squares problem because f(x;β) is a linear function in β1, β2 and β3; it is indeed
equivalent to the least squares problem

Aβ = y



where

A =


1 x1 x21
1 x2 x22
...

...
...

1 xm x2m

 .

When on the other hand the function f(x;β) is nonlinear in at least one of the
βi parameters, then the curve-fitting least squares problem also becomes a nonlinear.
Closed form solutions are not generally available for these nonlinear problems, but the
Gauss–Newton method is often a suitable numerical method. The method proceeds as
follows: Suppose now that β ∈ Rn for some n ≥ 1 (i.e., that the curve-fitting has n
degrees of freedom) and let

R(β) :=

 r1(β)
...

rm(β)

 =

 f(x1;β)− b1
...

f(xm;β)− bm


and with Jacobian

JR(β) ∈ Rm×n, with components (JR(β))ij =
∂ri(β)

∂βj
.

Given start guess β(0) ∈ Rn let

β(k+1) = β(k) −
(
((JR(β

(k)))TJR(β
(k))

)−1
(JR(β

(k)))TR(β(k)) for k = 0, 1, . . . (3)

The motivation for this iteration algorithm is that a local minimizer β∗ of (2) satisfies
that ∇S(β∗) = 0, and, under some assumptions, this is indeed the equation that the
Gauss–Newton method solves. Noting that

∇S(β) = 2(JR(β))
TR(β),

and applying Newton’s method to solve F (β) = 2(JR(β))
TR(β) = 0 yields the iterations

β(k+1) = β(k) − (JF (β
(k)))−1F (β(k)). (4)

And if R(β) is a sufficiently smooth function and β is sufficiently close to β∗, it often
holds that the Jacobian of F , JF (β) ∈ Rn×n, is well-approximated by

JF (β) ≈ 2JR(β))
TJR(β).

Plugging this approximation of JF into the Newton method (4) produces the Gauss–
Newton method (3). Under sufficient regularity and provided β(0) is sufficiently close to
β∗, one can show that the Gauss–Newton sequence converges to β∗. Such convergence
holds for the problem we will study below.

The problem:

a) Consider the function f(x, y;β) = (x − β1)
2 + (y − β2)

2 − β2
3 with arguments

(x, y) ∈ R2 and parameters β ∈ R3. Given β, the level set of all points (x, y) such
that f = 0 describes the circle centered at (β1, β2) and with radius |β3|.
We are given the following list of 20 noisy measurements of points on a circle

(and the measurements be downloaded as a .mat file from this link)

https://www.uio.no/studier/emner/matnat/math/MAT3110/h23/obligatory-assignments/circle-measurements.mat


x y

-2.3073 -3.5569

-1.6627 -4.5479

4.4413 -0.1823

-2.1021 -0.7938

-2.0460 -0.3176

5.1864 -3.9465

-2.6359 -4.3716

-1.0931 0.5035

1.9392 0.9895

4.7061 -3.2146

4.9005 -2.3397

0.5666 -5.9482

3.3504 -4.7778

1.7892 1.4214

1.2574 0.7869

-1.1229 -4.4437

0.3167 -6.1661

0.6024 0.7662

4.7246 -1.2589

4.9007 -3.6789

and we seek to find the circle β such that

f(xi, yi;β) = 0 i = 1, . . . , 20 (5)

holds in least squares sense. Describe the function R(β) for the nonlinear least
squares problem for determining this circle and compute its Jacobian JR(β) ∈
R20×3.

Extracting data points from file: For part b) and c) of this exercise. If you
prefer to download the “circle-measurements.mat” from the aforementioned link
rather than copying the above measurements, then, assuming you store the down-
loaded file in the same folder as you run Matlab or Pyton from, you can open it
and extract its information by the command load(’circle-measurements.mat’)
in Matlab, and by the following commands in Python:

import scipy.io

measurementData = scipy.io.loadmat(’circle -measurements.mat ’)

x = measurementData[’x’]

y = measurementData[’y’]

b) Find a reasonable guess for β(0) and compute the circle β∗ that best describes the
measurements in least squares sense using the Gauss–Newton method (3) on a com-
puter. Include one plot of containing the circle β∗ you obtain and the measurement
points.

Hint: The intervals (mini xi,maxi xi) and (mini yi,maxi yi) may point you to a rea-
sonable start guess. A circle β may for instance be plotted using polar coordinates
as follows in Matlab (and probably similarly in Python):

phi = linspace (0 ,1);%100 points \theta_i = i/99 on interval [0,1]

s1 = beta (1) + beta (3) * cos (2*pi*phi);

s2 = beta (2) + beta (3)* sin (2*pi*phi);

%plotting measurements points(x,y) as dots

%’*’ and the circle (s_1 ,s_2) as a curve

plot(x,y, ’*’, s1, s2)



c) Some nonlinear least squares problems, such as the one considered here, can be
reformulated as linear least squares problem. Before doing so, let us first assign
more intuitive labels to our parameters; let (xc, yc) = (β1, β2) denote the center
of the circle and let r = β3 denote its radius. With this notation, the system of
equations (5) can be written

(xi − xc)
2 + (yi − yc)

2 = r2 i = 1, . . . , 20

Expanding the squares and introducing the new unknown w = (r2 − x2c − y2c )/2,
the equations can also be written

xixc + yiyc + w =
x2i + y2i

2
i = 1, . . . , 20.

Solve the linear least squares problem with unknowns (xc, yc, w) on a computer and
use the equation for w to determine the circle’s radius, r. How does the solution
of this linear least squares problem compare to what you obtained in part b)?

Problem 3.

Interpolation and numerical integration in 2D.

a) Let Pn,n = {
∑n

i=0

∑n
j=0 cijx

iyj | cij ∈ R 0 ≤ i, j ≤ n} denote the set of 2-variate
polynomials in x and y that are of degree ≤ n in x and of degree ≤ n in y.

For a given 2D square [0, 1]2 with a square mesh (xi, yj) = (ih, jh) for 0 ≤ i, j ≤ n
and h = 1/n, and f ∈ C([0, 1]2), consider the interpolation problem: find p ∈ Pn,n

such that

p(xi, yj) = f(xi, yj) for all 0 ≤ i, j ≤ n. (6)

We recall from the lectures that this problem has a solution

p(x, y) =
n∑

k=0

n∑
ℓ=0

f(xk, yℓ)Lk(x)L̂ℓ(y), (7)

where Lk(x) is a univariate polynomial in x of degree n and L̂ℓ(y) is a univariate
polynomial of degree n in y.

Describe Lk(x) and L̂ℓ(y) and show that p(x, y) in (7) with the functions Lk and
L̂ℓ that you define indeed is a solution of (6).

b) Leaning on the fact that any univariate polynomial p of degree ≤ n that has n+1
or more zeros is equal to the 0 function, meaning p ≡ 0, show that the solution to
the 2 dimensional interpolation problem (6) is unique.

Hint: Let q ∈ Pn,n be another solution and consider the polynomial r = p − q.
Then r ∈ Pn,n, so it can be written

r(x, y) =
n∑

i=0

n∑
j=0

cijx
iyj



for some cij ∈ R. For any fixed yℓ, for 0 ≤ ℓ ≤ n, the function r(x, yℓ) is a
univariate polynomial in x of degree ≤ n, namely,

r(x, yℓ) =
n∑

i=0

( n∑
j=0

cijy
j
ℓ

)
︸ ︷︷ ︸

=:ai(yℓ)

xi =
n∑

i=0

ai(yℓ)x
i.

How many zeros does r(x, yℓ) have, what does this imply about the coefficients
ai(yℓ) for all 0 ≤ i ≤ n, and how can this be used to show that cij = 0 for all
0 ≤ i, j ≤ n?

c) The composite trapezoidal rule in 2D on the square mesh presented above can be
described as follows:∫ 1

0

∫ 1

0
f(x, y)dx dy ≈

n∑
i=1

n∑
j=1

∫ xi

xi−1

∫ yj

yj−1

pi,j(x, y) dx dy =: T (n),

where pi,j ∈ P1,1 denotes the unique polynomial that goes through f in the four
points (xi−1, yj−1), (xi, yj−1), (xi−1, yj) and (xi, yj).

Determine pi,j(x, y) and verify that the 2D square-mesh trapezoidal rule is given
by

T (n) =
h2

4

n∑
i=1

n∑
j=1

(
f(xi−1, yj−1) + f(xi, yj−1) + f(xi−1, yj) + f(xi, yj)

)
.

d) For ns = 21+s, s = 1, 2, . . . , 7, compute T (ns) to estimate the integral

I =

∫ 1

0

∫ 1

0
exp(−(x− sin(y2))3) dx dy.

Since we do not know the value of I, we approximate the error E(s) = |Ĩ −T (ns)|,
using the pseudo-reference solution Ĩ := T (210). Estimate numerically the order of
convergence r in

E(n) = cn−r +O(n−(r+1))

for example, through estimating the slope of the curve (log(ns), log(E(ns)) in a
plot, or by studying the ratio

r ≈ − log(E(ns))− log(E(ns−1))

log(ns)− log(ns−1)
,

which typically becomes more accurate for larger values of s. (See this link for
more on using loglog plots for convergence estimates.)

https://en.wikipedia.org/wiki/Log%E2%80%93log_plot

